Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets

德国的 电价预测 电力市场 经济 计量经济学 金融经济学 工程类 地理 电气工程 考古
作者
Stylianos Loizidis,Andreas Kyprianou,George E. Georghiou
出处
期刊:Applied Energy [Elsevier BV]
卷期号:363: 123058-123058 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123058
摘要

Electricity market liberalization and the absence of cost-efficient energy storage technologies have led to the transformation of state-owned electricity companies into complex electricity market entities, each having a different time horizon. Deregulation has intensified competition, giving rise to increased uncertainty caused by a multitude of interrelated exogenous factors, resulting in unexpected fluctuations in electricity prices. As a consequence, market participants encounter elevated risks and seek effective mitigation strategies. In this paper, the challenges described in the literature are addressed by studying price distribution histograms in the German and Finnish electricity markets. The objective is to identify normal price intervals that can serve as a foundation for an integrated Day-Ahead price forecasting methodology. A novel approach utilizing the Extreme Learning Machine in combination with Bootstrap intervals is proposed and applied to both markets. The findings demonstrate that Bootstrap intervals effectively capture normal prices, whereas extremely high prices typically align with the upper limits of Bootstrap intervals. Conversely, negative prices tend to fall outside the lower boundaries of the intervals. In order to assess the performance of the proposed methodology, a comparative analysis of its forecasting accuracy against the well-established Generalized AutoRegressive Conditional Heteroskedasticity and AutoRegressive Fractionally Integrated Moving Average models is conducted. In addition, both the computational efficiency and forecasting accuracy of the Extreme Learning Machine in comparison to the Artificial Neural Network are assessed. The results reveal the superior efficiency of the Extreme Learning Machine. The developed forecasting model could potentially assist market participants in making well-informed decisions and executing optimal bidding strategies in response to various scenarios before the Day-Ahead market closes. Notably, the proposed methodology transcends the limitations of fixed price thresholds and effectively addresses market nuances, including the occurrence of negative prices, thus offering a more comprehensive approach for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
个性的依风完成签到,获得积分10
1秒前
2秒前
2秒前
LGH完成签到 ,获得积分10
4秒前
科研小白完成签到,获得积分10
4秒前
8秒前
妖风发布了新的文献求助30
9秒前
小蒋完成签到 ,获得积分10
12秒前
山羊穿毛衣完成签到,获得积分0
12秒前
CodeCraft应助欧欧欧导采纳,获得10
14秒前
lucky完成签到 ,获得积分10
14秒前
何浏亮完成签到,获得积分10
15秒前
逍遥自在完成签到,获得积分10
15秒前
李白完成签到,获得积分10
15秒前
ty发布了新的文献求助10
17秒前
kyle完成签到 ,获得积分10
17秒前
哭泣青烟完成签到 ,获得积分10
20秒前
xiekunwhy完成签到,获得积分10
20秒前
甜蜜的白桃完成签到 ,获得积分10
21秒前
科研通AI2S应助圆圆懒羊羊采纳,获得10
23秒前
JamesPei应助橙子加油采纳,获得10
25秒前
26秒前
26秒前
靓丽的明辉完成签到,获得积分10
26秒前
叛逆黑洞完成签到 ,获得积分10
27秒前
tree完成签到,获得积分10
27秒前
xiaoguai完成签到 ,获得积分10
30秒前
30秒前
悦耳冬萱完成签到 ,获得积分10
30秒前
红花铁牛发布了新的文献求助10
31秒前
飞翔的梦完成签到,获得积分10
32秒前
阳光的道消完成签到,获得积分10
32秒前
33秒前
33秒前
cheng完成签到,获得积分10
33秒前
zyy完成签到 ,获得积分10
33秒前
Temperature关注了科研通微信公众号
36秒前
11发布了新的文献求助10
36秒前
隐形的书瑶完成签到 ,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965831
求助须知:如何正确求助?哪些是违规求助? 3511154
关于积分的说明 11156535
捐赠科研通 3245761
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268