Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets

德国的 电价预测 电力市场 经济 计量经济学 金融经济学 工程类 地理 电气工程 考古
作者
Stylianos Loizidis,Andreas Kyprianou,George E. Georghiou
出处
期刊:Applied Energy [Elsevier]
卷期号:363: 123058-123058 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123058
摘要

Electricity market liberalization and the absence of cost-efficient energy storage technologies have led to the transformation of state-owned electricity companies into complex electricity market entities, each having a different time horizon. Deregulation has intensified competition, giving rise to increased uncertainty caused by a multitude of interrelated exogenous factors, resulting in unexpected fluctuations in electricity prices. As a consequence, market participants encounter elevated risks and seek effective mitigation strategies. In this paper, the challenges described in the literature are addressed by studying price distribution histograms in the German and Finnish electricity markets. The objective is to identify normal price intervals that can serve as a foundation for an integrated Day-Ahead price forecasting methodology. A novel approach utilizing the Extreme Learning Machine in combination with Bootstrap intervals is proposed and applied to both markets. The findings demonstrate that Bootstrap intervals effectively capture normal prices, whereas extremely high prices typically align with the upper limits of Bootstrap intervals. Conversely, negative prices tend to fall outside the lower boundaries of the intervals. In order to assess the performance of the proposed methodology, a comparative analysis of its forecasting accuracy against the well-established Generalized AutoRegressive Conditional Heteroskedasticity and AutoRegressive Fractionally Integrated Moving Average models is conducted. In addition, both the computational efficiency and forecasting accuracy of the Extreme Learning Machine in comparison to the Artificial Neural Network are assessed. The results reveal the superior efficiency of the Extreme Learning Machine. The developed forecasting model could potentially assist market participants in making well-informed decisions and executing optimal bidding strategies in response to various scenarios before the Day-Ahead market closes. Notably, the proposed methodology transcends the limitations of fixed price thresholds and effectively addresses market nuances, including the occurrence of negative prices, thus offering a more comprehensive approach for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助yf_zhu采纳,获得10
刚刚
llk发布了新的文献求助10
1秒前
一只大肥猫完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
3秒前
3秒前
科研通AI5应助GGG采纳,获得10
4秒前
4秒前
6秒前
Ann发布了新的文献求助20
6秒前
6秒前
buno应助duxinyue采纳,获得10
6秒前
xlj发布了新的文献求助10
7秒前
7秒前
可爱的函函应助zhen采纳,获得10
8秒前
研友_VZG7GZ应助dingdong采纳,获得10
9秒前
9秒前
李成恩完成签到 ,获得积分10
10秒前
心碎的黄焖鸡完成签到 ,获得积分10
10秒前
琪琪扬扬发布了新的文献求助10
11秒前
12秒前
12秒前
宗磬完成签到,获得积分10
13秒前
NexusExplorer应助搞怪不言采纳,获得10
14秒前
科研通AI5应助一天八杯水采纳,获得10
15秒前
15秒前
15秒前
16秒前
大模型应助琪琪扬扬采纳,获得10
17秒前
丘比特应助琪琪扬扬采纳,获得10
17秒前
共享精神应助琪琪扬扬采纳,获得10
17秒前
JamesPei应助dafwfwaf采纳,获得10
17秒前
叶子完成签到,获得积分10
17秒前
xuyun完成签到,获得积分10
17秒前
脑洞疼应助木棉采纳,获得10
17秒前
GGG发布了新的文献求助10
17秒前
zena92完成签到,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808