Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets

德国的 电价预测 电力市场 经济 计量经济学 金融经济学 工程类 地理 电气工程 考古
作者
Stylianos Loizidis,Andreas Kyprianou,George E. Georghiou
出处
期刊:Applied Energy [Elsevier BV]
卷期号:363: 123058-123058 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123058
摘要

Electricity market liberalization and the absence of cost-efficient energy storage technologies have led to the transformation of state-owned electricity companies into complex electricity market entities, each having a different time horizon. Deregulation has intensified competition, giving rise to increased uncertainty caused by a multitude of interrelated exogenous factors, resulting in unexpected fluctuations in electricity prices. As a consequence, market participants encounter elevated risks and seek effective mitigation strategies. In this paper, the challenges described in the literature are addressed by studying price distribution histograms in the German and Finnish electricity markets. The objective is to identify normal price intervals that can serve as a foundation for an integrated Day-Ahead price forecasting methodology. A novel approach utilizing the Extreme Learning Machine in combination with Bootstrap intervals is proposed and applied to both markets. The findings demonstrate that Bootstrap intervals effectively capture normal prices, whereas extremely high prices typically align with the upper limits of Bootstrap intervals. Conversely, negative prices tend to fall outside the lower boundaries of the intervals. In order to assess the performance of the proposed methodology, a comparative analysis of its forecasting accuracy against the well-established Generalized AutoRegressive Conditional Heteroskedasticity and AutoRegressive Fractionally Integrated Moving Average models is conducted. In addition, both the computational efficiency and forecasting accuracy of the Extreme Learning Machine in comparison to the Artificial Neural Network are assessed. The results reveal the superior efficiency of the Extreme Learning Machine. The developed forecasting model could potentially assist market participants in making well-informed decisions and executing optimal bidding strategies in response to various scenarios before the Day-Ahead market closes. Notably, the proposed methodology transcends the limitations of fixed price thresholds and effectively addresses market nuances, including the occurrence of negative prices, thus offering a more comprehensive approach for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
HXDong123发布了新的文献求助10
1秒前
1秒前
1秒前
无私秋珊应助lx840518采纳,获得10
1秒前
小蘑菇应助kingyuan采纳,获得10
1秒前
甜菜发布了新的文献求助10
1秒前
陈怀祚完成签到,获得积分20
2秒前
2秒前
一盆多肉完成签到,获得积分10
2秒前
2秒前
所所应助iHateTheWorld采纳,获得10
2秒前
Yuan发布了新的文献求助10
2秒前
研友_pnx37L发布了新的文献求助10
2秒前
3秒前
小肥羊完成签到 ,获得积分10
3秒前
重要棉花糖完成签到,获得积分10
3秒前
4秒前
4秒前
JUYIN发布了新的文献求助10
4秒前
陈怀祚发布了新的文献求助10
4秒前
xiaoxiao发布了新的文献求助10
4秒前
肖恩发布了新的文献求助10
4秒前
过时关注了科研通微信公众号
5秒前
5秒前
可爱安筠发布了新的文献求助10
5秒前
汉堡包应助TristanGuan采纳,获得30
5秒前
小赵发布了新的文献求助10
6秒前
斯文败类应助summer采纳,获得10
6秒前
超帅怜阳完成签到,获得积分10
6秒前
月亮发布了新的文献求助10
6秒前
研友_VZG7GZ应助火星上送终采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
CipherSage应助xiaoyuyuyu采纳,获得10
7秒前
7秒前
常常完成签到 ,获得积分10
7秒前
7秒前
乐乐应助iron采纳,获得10
8秒前
Tess发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193549
求助须知:如何正确求助?哪些是违规求助? 4376036
关于积分的说明 13627965
捐赠科研通 4230855
什么是DOI,文献DOI怎么找? 2320601
邀请新用户注册赠送积分活动 1318989
关于科研通互助平台的介绍 1269260