Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets

德国的 电价预测 电力市场 经济 计量经济学 金融经济学 工程类 地理 电气工程 考古
作者
Stylianos Loizidis,Andreas Kyprianou,George E. Georghiou
出处
期刊:Applied Energy [Elsevier]
卷期号:363: 123058-123058 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123058
摘要

Electricity market liberalization and the absence of cost-efficient energy storage technologies have led to the transformation of state-owned electricity companies into complex electricity market entities, each having a different time horizon. Deregulation has intensified competition, giving rise to increased uncertainty caused by a multitude of interrelated exogenous factors, resulting in unexpected fluctuations in electricity prices. As a consequence, market participants encounter elevated risks and seek effective mitigation strategies. In this paper, the challenges described in the literature are addressed by studying price distribution histograms in the German and Finnish electricity markets. The objective is to identify normal price intervals that can serve as a foundation for an integrated Day-Ahead price forecasting methodology. A novel approach utilizing the Extreme Learning Machine in combination with Bootstrap intervals is proposed and applied to both markets. The findings demonstrate that Bootstrap intervals effectively capture normal prices, whereas extremely high prices typically align with the upper limits of Bootstrap intervals. Conversely, negative prices tend to fall outside the lower boundaries of the intervals. In order to assess the performance of the proposed methodology, a comparative analysis of its forecasting accuracy against the well-established Generalized AutoRegressive Conditional Heteroskedasticity and AutoRegressive Fractionally Integrated Moving Average models is conducted. In addition, both the computational efficiency and forecasting accuracy of the Extreme Learning Machine in comparison to the Artificial Neural Network are assessed. The results reveal the superior efficiency of the Extreme Learning Machine. The developed forecasting model could potentially assist market participants in making well-informed decisions and executing optimal bidding strategies in response to various scenarios before the Day-Ahead market closes. Notably, the proposed methodology transcends the limitations of fixed price thresholds and effectively addresses market nuances, including the occurrence of negative prices, thus offering a more comprehensive approach for electricity price forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达菲完成签到,获得积分10
2秒前
2秒前
珊珊发布了新的文献求助10
2秒前
牛诗悦发布了新的文献求助10
2秒前
李健应助科研通管家采纳,获得10
4秒前
白鸽应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得10
4秒前
YH发布了新的文献求助10
9秒前
研友_ZzrWKZ完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
17秒前
17秒前
无花果应助Ivy采纳,获得10
17秒前
aaaaa发布了新的文献求助10
18秒前
yoyo完成签到,获得积分10
18秒前
延胡索完成签到,获得积分10
20秒前
IAMXC发布了新的文献求助10
21秒前
呜呼啦呼完成签到,获得积分10
23秒前
23秒前
KK完成签到,获得积分10
24秒前
米欧完成签到,获得积分10
24秒前
25秒前
尊敬乐蕊完成签到,获得积分10
27秒前
Xulyun完成签到 ,获得积分10
28秒前
30秒前
材化小将军完成签到,获得积分10
31秒前
情怀应助春携秋水揽星河采纳,获得10
33秒前
栖月完成签到,获得积分10
34秒前
37秒前
机灵的冰夏完成签到,获得积分10
39秒前
long0809发布了新的文献求助10
42秒前
Crisp完成签到,获得积分10
42秒前
善学以致用应助sje采纳,获得10
45秒前
zz完成签到,获得积分10
47秒前
动听的谷秋完成签到 ,获得积分10
51秒前
乐乐应助忧伤的靖柔采纳,获得10
51秒前
小蘑菇应助昏睡的雨寒采纳,获得10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791107
关于积分的说明 7797976
捐赠科研通 2447576
什么是DOI,文献DOI怎么找? 1301949
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194