Electricity market price forecasting using ELM and Bootstrap analysis: A case study of the German and Finnish Day-Ahead markets

德国的 电价预测 电力市场 经济 计量经济学 金融经济学 工程类 地理 电气工程 考古
作者
Stylianos Loizidis,Andreas Kyprianou,George E. Georghiou
出处
期刊:Applied Energy [Elsevier]
卷期号:363: 123058-123058 被引量:5
标识
DOI:10.1016/j.apenergy.2024.123058
摘要

Electricity market liberalization and the absence of cost-efficient energy storage technologies have led to the transformation of state-owned electricity companies into complex electricity market entities, each having a different time horizon. Deregulation has intensified competition, giving rise to increased uncertainty caused by a multitude of interrelated exogenous factors, resulting in unexpected fluctuations in electricity prices. As a consequence, market participants encounter elevated risks and seek effective mitigation strategies. In this paper, the challenges described in the literature are addressed by studying price distribution histograms in the German and Finnish electricity markets. The objective is to identify normal price intervals that can serve as a foundation for an integrated Day-Ahead price forecasting methodology. A novel approach utilizing the Extreme Learning Machine in combination with Bootstrap intervals is proposed and applied to both markets. The findings demonstrate that Bootstrap intervals effectively capture normal prices, whereas extremely high prices typically align with the upper limits of Bootstrap intervals. Conversely, negative prices tend to fall outside the lower boundaries of the intervals. In order to assess the performance of the proposed methodology, a comparative analysis of its forecasting accuracy against the well-established Generalized AutoRegressive Conditional Heteroskedasticity and AutoRegressive Fractionally Integrated Moving Average models is conducted. In addition, both the computational efficiency and forecasting accuracy of the Extreme Learning Machine in comparison to the Artificial Neural Network are assessed. The results reveal the superior efficiency of the Extreme Learning Machine. The developed forecasting model could potentially assist market participants in making well-informed decisions and executing optimal bidding strategies in response to various scenarios before the Day-Ahead market closes. Notably, the proposed methodology transcends the limitations of fixed price thresholds and effectively addresses market nuances, including the occurrence of negative prices, thus offering a more comprehensive approach for electricity price forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶桃七七发布了新的文献求助10
刚刚
opq2001发布了新的文献求助30
1秒前
丰富的泥猴桃完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
乐乐应助未央采纳,获得10
5秒前
小于发布了新的文献求助10
5秒前
liuj完成签到,获得积分10
6秒前
脑洞疼应助seedcui采纳,获得10
7秒前
大个应助CDreamY采纳,获得10
7秒前
大模型应助lengchitu采纳,获得10
8秒前
xuhang完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
yan完成签到,获得积分10
10秒前
10秒前
张巨锋完成签到,获得积分10
12秒前
小马甲应助我叫胖子采纳,获得10
13秒前
春风发布了新的文献求助10
13秒前
没有锁骨的丑丑完成签到,获得积分10
14秒前
14秒前
无情的rr发布了新的文献求助10
14秒前
小刘完成签到,获得积分10
15秒前
15秒前
CipherSage应助啦啦啦采纳,获得10
16秒前
Estelle完成签到 ,获得积分10
16秒前
lm发布了新的文献求助10
16秒前
司空凡发布了新的文献求助10
17秒前
17秒前
科研白菜白完成签到,获得积分10
19秒前
nhscyhy发布了新的文献求助10
20秒前
22秒前
顾矜应助小于采纳,获得10
24秒前
北落发布了新的文献求助10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
烟花应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
司空凡完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123