RS-YOLOx: target feature enhancement and bounding box auxiliary regression based object detection approach for remote sensing

最小边界框 计算机科学 目标检测 人工智能 遥感 特征(语言学) 模式识别(心理学) 特征提取 跳跃式监视 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Bao Liu,Wenqiang Jiang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:18 (01) 被引量:1
标识
DOI:10.1117/1.jrs.18.016514
摘要

This work presents a method for remote sensing object detection (RSOD) based on target feature enhancement and bounding box (Bbox) auxiliary regression. Due to the characteristics of dense distribution, easy feature loss, and difficult Bbox regression (ground truth boxes of medium and small objects in remote sensing images usually only contain a few pixel sizes, making they difficult to regress from the global image), the problem of low accuracy of RSOD arises. Especially, it is easy to lose the features of medium and small objects in RSOD. This work proposes a target feature enhancement module, which enhances the feature transmission of medium and small objects by mapping deep and shallow features. Furthermore, considering that the existence of low-quality labeled data in remote sensing datasets will affect the training process of detection methods, this work proposes a wise intersection over union (Wise-IoU) loss. The Wise-IoU loss focuses on important ordinary-quality labels and improves the overall performance of RSOD. To solve the problem of difficult Bbox regression caused by the small size in remote sensing objects, this paper also proposes a coarse-to-fine Bbox regression model. The new model improves the regression speed and accuracy of medium and small object Bbox by using the auxiliary IoU loss. In addition, the validity and versatility of the method were verified on the Min-DOTA dataset, UCAS-AOD dataset, RSOD dataset, and Min-AI-TOD dataset. The results show that compared with other methods (see, e.g., FCOS, YOLOx, YOLOv7, and YOLOv8), our method has better detection performance and meets real-time detection requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助fisherluo采纳,获得10
1秒前
2秒前
小年完成签到,获得积分10
2秒前
3秒前
乐乐应助就爱吃土豆采纳,获得10
4秒前
6秒前
传奇3应助da采纳,获得10
7秒前
7秒前
7秒前
8秒前
车道出完成签到,获得积分10
9秒前
陆志琴发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
kecheng应助动听锦程采纳,获得10
12秒前
开心罡完成签到,获得积分10
12秒前
思源应助shinn采纳,获得10
13秒前
hkf发布了新的文献求助10
13秒前
菜狗发布了新的文献求助10
13秒前
srics发布了新的文献求助10
14秒前
夜月残阳发布了新的文献求助10
14秒前
昏睡的蟠桃应助Pittes采纳,获得50
14秒前
就爱吃土豆完成签到,获得积分0
14秒前
路漫漫完成签到 ,获得积分10
15秒前
15秒前
dadadasda发布了新的文献求助30
15秒前
15秒前
Husky发布了新的文献求助10
15秒前
柠檬完成签到,获得积分10
15秒前
窦房结完成签到 ,获得积分10
15秒前
16秒前
西红柿呀发布了新的文献求助10
16秒前
17秒前
Jaden完成签到,获得积分10
20秒前
南风发布了新的文献求助10
20秒前
脑洞疼应助科研小白鼠采纳,获得30
21秒前
小蘑菇应助srics采纳,获得10
21秒前
Ava应助DZ采纳,获得10
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193