Carbon-doped Co3O4-MgO catalyzed peroxymonosulfate activation via an enhanced Co(III)/Co(II) cycle for rapid chloramphenicol degradation

催化作用 降级(电信) 化学 碳纤维 煅烧 罗丹明B 无机化学 核化学 材料科学 有机化学 光催化 电信 复合数 计算机科学 复合材料
作者
Haiyan Liu,Shisi Deng,Wei Li,Zezhong Shan,Qianqian Wei,Ying Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:461: 142115-142115 被引量:21
标识
DOI:10.1016/j.cej.2023.142115
摘要

Advanced oxidation processes based on heterogeneous peroxymonosulfate activation (PMS) have been a feasible strategy for removing organic pollutants. In this study, the waste filter membranes in the laboratory were used as a carbon material, which combines with cobalt and magnesium to obtain the carbon-doped cobalt-magnesium binary oxides (C/Co3O4–MgO) after calcination to activate PMS for chloramphenicol (CAP) degradation. The results revealed that the degradation efficiency of CAP in the C/Co3O4–MgO/PMS system reached 98% within 15 min, much higher than those in C/Co3O4/PMS (62%) and Co3O4–MgO/PMS (68%) systems. The excellent catalytic performance of the C/Co3O4–MgO material was attributable to a good synergistic interaction between C, Co, and Mg. Electron paramagnetic resonance test and quenching experiments confirmed that •OH, SO4•−, and 1O2 were reactive oxygen species involved in CAP degradation. The intermediates of CAP degradation were analyzed via a high-performance liquid chromatography–high-resolution mass spectrometry method, and the possible degradation pathways of CAP were proposed. C/Co3O4–MgO exhibited good stability and reusability. The concentration of leached Co ions was lower than 0.53 mg L−1, and over 95% of CAP was still decomposed in the fifth cycle. Furthermore, the degradation of rhodamine B, sulfamethazine, and phenacetin via PMS activation by C/Co3O4–MgO was investigated. These three pollutants are almost completely degraded within 10 min. Therefore, C/Co3O4–MgO is an excellent heterogeneous catalyst used for activating PMS to degrade organic pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐完成签到,获得积分10
1秒前
星星发布了新的文献求助10
1秒前
田様应助TJJJJJ采纳,获得10
1秒前
科研通AI5应助广发牛勿采纳,获得30
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
我行我素完成签到,获得积分10
4秒前
丘比特应助清脆的绮梅采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
4秒前
笑而不语完成签到,获得积分10
4秒前
6秒前
微微发布了新的文献求助10
6秒前
Orange应助Whitney采纳,获得10
7秒前
科研通AI5应助yyy采纳,获得10
7秒前
SJW发布了新的文献求助10
8秒前
growing完成签到,获得积分10
8秒前
源主儿完成签到,获得积分20
8秒前
9秒前
荷塘月色完成签到,获得积分10
9秒前
9秒前
Orochimaru发布了新的文献求助10
9秒前
青阳完成签到,获得积分10
10秒前
彭于晏应助jianguo采纳,获得30
10秒前
xiuxiu关注了科研通微信公众号
10秒前
10秒前
CodeCraft应助星星采纳,获得10
10秒前
Echo1发布了新的文献求助10
10秒前
10秒前
CipherSage应助小嘎采纳,获得10
11秒前
ning完成签到,获得积分10
11秒前
12秒前
明理的水瑶完成签到 ,获得积分10
12秒前
ying应助jio采纳,获得10
13秒前
wanci应助RenHP采纳,获得10
13秒前
huanghhhh发布了新的文献求助10
13秒前
14秒前
小蘑菇应助zj杰采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558993
求助须知:如何正确求助?哪些是违规求助? 3133656
关于积分的说明 9403638
捐赠科研通 2833791
什么是DOI,文献DOI怎么找? 1557686
邀请新用户注册赠送积分活动 727612
科研通“疑难数据库(出版商)”最低求助积分说明 716366