An ADAS with better driver satisfaction under rear-end near-crash scenarios: A spatio-temporal graph transformer-based prediction framework of evasive behavior and collision risk

碰撞 撞车 计算机科学 变压器 端到端原则 图形 工程类 人工智能 计算机安全 电气工程 理论计算机科学 电压 程序设计语言
作者
Jianqiang Gao,Bo Yu,Yu-Ren Chen,Shan Bao,Kun Gao,Lanfang Zhang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:159: 104491-104491
标识
DOI:10.1016/j.trc.2024.104491
摘要

Current advanced driver assistance systems (ADASs) do not consider drivers’ preferences of evasive behavior types and risk levels under rear-end near-crash scenarios, which undermines driver satisfaction, trust, and use of ADASs. Additionally, spatio-temporal interactions between vehicles are not fully involved in current evasive behavior prediction models, and the influence of evasive behavior is ignored while predicting collision risk. To address these issues, this study aims to propose an ADAS with better driver satisfaction under rear-end near-crash scenarios by establishing a spatio-temporal graph transformer-based prediction framework of evasive behavior and collision risk. A total of 822 evasive events are extracted from 108,000 real vehicle trajectories on highways, and variables from three sources (i.e., road environment features, evading vehicle features, and interactive behavior features) are used to construct rear-end near-crash scenario knowledge graphs (RNSKGs). By utilizing RNSKGs embedding and multi-head self-attention mechanism, spatio-temporal graph transformer networks can effectively capture the spatio-temporal interactions between vehicles. The results show that the prediction accuracy of evasive behavior (i.e., braking-only or braking and steering) and collision risk (lower, medium, or higher risk) is 96.34% and 92.12%, respectively, superior to other commonly-used methods. After including the selected evasive behavior in predicting collision risk, the overall accuracy increases by 10.91%. Then, an autonomous evasive takeover system (AET) based on the prediction framework is developed, and its effectiveness and satisfaction are verified by driving simulation experiments. According to the self-reported data of participants, the safety, comfort, usability, and acceptability of AET proposed in this study all significantly outperform existing autonomous takeover systems (i.e., autonomous emergency braking and autonomous emergency steering). The findings of this study might contribute to the optimization of ADASs, the enhancement of mutual understanding between ADASs and human drivers, and the improvement of active driving safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alex完成签到,获得积分10
刚刚
刚刚
周周发布了新的文献求助10
1秒前
Lucas应助周裕川采纳,获得10
2秒前
Jasper应助挂科且补考采纳,获得10
2秒前
3秒前
科研通AI5应助江东东东采纳,获得30
4秒前
Jasper应助欣欣然采纳,获得10
5秒前
狂野妙菡完成签到,获得积分10
5秒前
sjc发布了新的文献求助10
5秒前
6秒前
传奇3应助吴1采纳,获得30
7秒前
852应助高天雨采纳,获得10
9秒前
11秒前
12秒前
liuheqian完成签到,获得积分10
12秒前
qtr发布了新的文献求助10
12秒前
kkx发布了新的文献求助10
12秒前
无奈夏菡完成签到,获得积分10
12秒前
犹豫的灵萱完成签到,获得积分10
13秒前
sjc完成签到,获得积分10
14秒前
14秒前
小幻发布了新的文献求助60
14秒前
15秒前
15秒前
当归参子发布了新的文献求助10
16秒前
16秒前
17秒前
SYLH应助xiongdi521采纳,获得10
17秒前
周裕川发布了新的文献求助10
18秒前
吴1发布了新的文献求助30
18秒前
Ergou发布了新的文献求助10
18秒前
Ceng发布了新的文献求助10
19秒前
占囧发布了新的文献求助10
20秒前
ava425完成签到,获得积分10
20秒前
21秒前
小闫发布了新的文献求助10
21秒前
21秒前
21秒前
高天雨发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737