振动
模式识别(心理学)
计算机科学
特征提取
断层(地质)
小波
信号(编程语言)
人工智能
方位(导航)
特征(语言学)
小波包分解
信息融合
融合
特征向量
传感器融合
小波变换
支持向量机
k-最近邻算法
信号处理
声学
雷达
电信
语言学
哲学
物理
地震学
地质学
程序设计语言
作者
Xian Wang,Yaqiong Lv,Yu Liu
标识
DOI:10.1109/ieem58616.2023.10406566
摘要
The signals of different modes often contain different information and reflect different aspects of the detected system. In the fault diagnosis of rolling bearings, the feature fusion of multimodal signals can make the diagnosis result more accurate and more robust. Therefore, the vibration signal and acoustic signal of the rolling bearing are adopted, and the 8-dimensional energy features of the two signals are extracted respectively by the wavelet packet transform (WPT) method. Then the features of the two modes are fused, and the fused feature vector is input to the K-nearest neighbors (KNN) classifier for fault classification. Experimental results show that the proposed method is superior to the single-mode signal fault diagnosis method, which shows the effectiveness and superiority of multimodal feature fusion.
科研通智能强力驱动
Strongly Powered by AbleSci AI