人工神经网络
可解释性
计算机科学
涡轮机
白噪声
公制(单位)
代表(政治)
风力发电
人工智能
机器学习
控制理论(社会学)
工程类
机械工程
电信
运营管理
电气工程
控制(管理)
政治
法学
政治学
作者
Hongqing Zheng,Wujin Deng,Wanqing Song,Wei Cheng,Piercarlo Cattani,Francesco Villecco
出处
期刊:Fractal and fractional
[Multidisciplinary Digital Publishing Institute]
日期:2023-12-22
卷期号:8 (1): 14-14
被引量:3
标识
DOI:10.3390/fractalfract8010014
摘要
The remaining useful life (RUL) prediction of wind turbine planetary gearboxes is crucial for the reliable operation of new energy power systems. However, the interpretability of the current RUL prediction models is not satisfactory. To this end, a multi-stage RUL prediction model is proposed in this work, with an interpretable metric-based feature selection algorithm. In the proposed model, the advantages of neural networks and long-range-dependent stochastic processes are combined. In the offline training stage, a general representation of the degradation trend is learned with the meta-long short-term memory neural network (meta-LSTM) model. The inevitable measurement error in the sensor reading is modelled by white Gaussian noise. During the online RUL prediction stage, fractional generalized Pareto motion (fGPm) with an adaptive diffusion is employed to model the stochasticity of the planetary gearbox degradation. In the case study, real planetary gearbox degradation data are used for the model validation.
科研通智能强力驱动
Strongly Powered by AbleSci AI