USER: Unified Semantic Enhancement With Momentum Contrast for Image-Text Retrieval

计算机科学 人工智能 推论 图像检索 任务(项目管理) 水准点(测量) 自然语言处理 情报检索 图像(数学) 大地测量学 经济 管理 地理
作者
Yan Zhang,Zhong Ji,Di Wang,Yanwei Pang,Xuelong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 595-609 被引量:17
标识
DOI:10.1109/tip.2023.3348297
摘要

As a fundamental and challenging task in bridging language and vision domains, Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality, and its key challenge is to measure the semantic similarity across different modalities. Although significant progress has been achieved, existing approaches typically suffer from two major limitations: (1) It hurts the accuracy of the representation by directly exploiting the bottom-up attention based region-level features where each region is equally treated. (2) It limits the scale of negative sample pairs by employing the mini-batch based end-to-end training mechanism. To address these limitations, we propose a Unified Semantic Enhancement Momentum Contrastive Learning (USER) method for ITR. Specifically, we delicately design two simple but effective Global representation based Semantic Enhancement (GSE) modules. One learns the global representation via the self-attention algorithm, noted as Self-Guided Enhancement (SGE) module. The other module benefits from the pre-trained CLIP module, which provides a novel scheme to exploit and transfer the knowledge from an off-the-shelf model, noted as CLIP-Guided Enhancement (CGE) module. Moreover, we incorporate the training mechanism of MoCo into ITR, in which two dynamic queues are employed to enrich and enlarge the scale of negative sample pairs. Meanwhile, a Unified Training Objective (UTO) is developed to learn from mini-batch based and dynamic queue based samples. Extensive experiments on the benchmark MSCOCO and Flickr30K datasets demonstrate the superiority of both retrieval accuracy and inference efficiency. For instance, compared with the existing best method NAAF, the metric R@1 of our USER on the MSCOCO 5K Testing set is improved by 5% and 2.4% on caption retrieval and image retrieval without any external knowledge or pre-trained model while enjoying over 60 times faster inference speed. Our source code will be released at https://github.com/zhangy0822/USER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QWE完成签到,获得积分10
刚刚
赛赛完成签到 ,获得积分10
2秒前
tinydog完成签到,获得积分10
4秒前
长情琦完成签到,获得积分10
4秒前
Mercury完成签到 ,获得积分10
6秒前
zx完成签到 ,获得积分10
7秒前
Dearjw1655完成签到,获得积分10
8秒前
123完成签到 ,获得积分10
8秒前
圆圆完成签到 ,获得积分10
9秒前
13秒前
哭泣笑柳发布了新的文献求助10
14秒前
张宁波完成签到,获得积分10
14秒前
OeO完成签到 ,获得积分10
14秒前
macboy完成签到,获得积分10
16秒前
biubiu完成签到,获得积分10
17秒前
咸鱼之王完成签到,获得积分10
18秒前
比比谁的速度快给ljm的求助进行了留言
18秒前
Can完成签到,获得积分10
19秒前
hhh完成签到,获得积分10
19秒前
qqq发布了新的文献求助10
19秒前
E0702完成签到,获得积分10
19秒前
21秒前
lin完成签到 ,获得积分20
22秒前
乐乐应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
yi完成签到,获得积分10
26秒前
biofresh发布了新的文献求助30
26秒前
一路芬芳发布了新的文献求助10
28秒前
重要小兔子完成签到,获得积分10
29秒前
王大锤完成签到,获得积分10
30秒前
乌兰巴托没有海完成签到,获得积分10
33秒前
36秒前
lin关注了科研通微信公众号
37秒前
38秒前
兴奋小丸子完成签到,获得积分10
39秒前
40秒前
41秒前
41秒前
keyanxiaobai完成签到,获得积分10
42秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022