USER: Unified Semantic Enhancement With Momentum Contrast for Image-Text Retrieval

计算机科学 人工智能 推论 图像检索 任务(项目管理) 水准点(测量) 代表(政治) 自然语言处理 情报检索 机器学习 图像(数学) 大地测量学 政治学 政治 经济 管理 法学 地理
作者
Yan Zhang,Zhong Ji,Di Wang,Yanwei Pang,Xuelong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 595-609 被引量:6
标识
DOI:10.1109/tip.2023.3348297
摘要

As a fundamental and challenging task in bridging language and vision domains, Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality, and its key challenge is to measure the semantic similarity across different modalities. Although significant progress has been achieved, existing approaches typically suffer from two major limitations: (1) It hurts the accuracy of the representation by directly exploiting the bottom-up attention based region-level features where each region is equally treated. (2) It limits the scale of negative sample pairs by employing the mini-batch based end-to-end training mechanism. To address these limitations, we propose a Unified Semantic Enhancement Momentum Contrastive Learning (USER) method for ITR. Specifically, we delicately design two simple but effective Global representation based Semantic Enhancement (GSE) modules. One learns the global representation via the self-attention algorithm, noted as Self-Guided Enhancement (SGE) module. The other module benefits from the pre-trained CLIP module, which provides a novel scheme to exploit and transfer the knowledge from an off-the-shelf model, noted as CLIP-Guided Enhancement (CGE) module. Moreover, we incorporate the training mechanism of MoCo into ITR, in which two dynamic queues are employed to enrich and enlarge the scale of negative sample pairs. Meanwhile, a Unified Training Objective (UTO) is developed to learn from mini-batch based and dynamic queue based samples. Extensive experiments on the benchmark MSCOCO and Flickr30K datasets demonstrate the superiority of both retrieval accuracy and inference efficiency. For instance, compared with the existing best method NAAF, the metric R@1 of our USER on the MSCOCO 5K Testing set is improved by 5% and 2.4% on caption retrieval and image retrieval without any external knowledge or pre-trained model while enjoying over 60 times faster inference speed. Our source code will be released at https://github.com/zhangy0822/USER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阔达的乌冬面完成签到,获得积分10
1秒前
3秒前
5秒前
Owen应助eagle14835采纳,获得10
6秒前
mm发布了新的文献求助10
6秒前
肥鹏发布了新的文献求助10
6秒前
DDda完成签到 ,获得积分10
6秒前
天天快乐应助zhhr采纳,获得10
7秒前
7秒前
李健的粉丝团团长应助WYP采纳,获得30
8秒前
Together Forever完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
凶狠的鸣凤完成签到,获得积分10
10秒前
peck82完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
xiaohe发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
chwmqnf发布了新的文献求助10
12秒前
12秒前
14秒前
RTena.完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
jjjeneny发布了新的文献求助10
17秒前
jenny发布了新的文献求助10
17秒前
一_发布了新的文献求助10
17秒前
卢西奥发布了新的文献求助10
18秒前
小狗同志006完成签到,获得积分10
18秒前
LOVE0077发布了新的文献求助10
18秒前
18秒前
18秒前
外向的紫霜完成签到,获得积分10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771