USER: Unified Semantic Enhancement With Momentum Contrast for Image-Text Retrieval

计算机科学 人工智能 推论 图像检索 任务(项目管理) 水准点(测量) 自然语言处理 情报检索 图像(数学) 大地测量学 经济 管理 地理
作者
Yan Zhang,Zhong Ji,Di Wang,Yanwei Pang,Xuelong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 595-609 被引量:21
标识
DOI:10.1109/tip.2023.3348297
摘要

As a fundamental and challenging task in bridging language and vision domains, Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality, and its key challenge is to measure the semantic similarity across different modalities. Although significant progress has been achieved, existing approaches typically suffer from two major limitations: (1) It hurts the accuracy of the representation by directly exploiting the bottom-up attention based region-level features where each region is equally treated. (2) It limits the scale of negative sample pairs by employing the mini-batch based end-to-end training mechanism. To address these limitations, we propose a Unified Semantic Enhancement Momentum Contrastive Learning (USER) method for ITR. Specifically, we delicately design two simple but effective Global representation based Semantic Enhancement (GSE) modules. One learns the global representation via the self-attention algorithm, noted as Self-Guided Enhancement (SGE) module. The other module benefits from the pre-trained CLIP module, which provides a novel scheme to exploit and transfer the knowledge from an off-the-shelf model, noted as CLIP-Guided Enhancement (CGE) module. Moreover, we incorporate the training mechanism of MoCo into ITR, in which two dynamic queues are employed to enrich and enlarge the scale of negative sample pairs. Meanwhile, a Unified Training Objective (UTO) is developed to learn from mini-batch based and dynamic queue based samples. Extensive experiments on the benchmark MSCOCO and Flickr30K datasets demonstrate the superiority of both retrieval accuracy and inference efficiency. For instance, compared with the existing best method NAAF, the metric R@1 of our USER on the MSCOCO 5K Testing set is improved by 5% and 2.4% on caption retrieval and image retrieval without any external knowledge or pre-trained model while enjoying over 60 times faster inference speed. Our source code will be released at https://github.com/zhangy0822/USER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔺阁完成签到,获得积分20
1秒前
1秒前
斯文败类应助刘刘采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
小马甲应助沙滩的收印采纳,获得10
3秒前
鲤跃完成签到,获得积分10
3秒前
3秒前
万能图书馆应助coster采纳,获得10
4秒前
4秒前
4秒前
4秒前
蒸蒸日上完成签到,获得积分10
5秒前
5秒前
从容雪冥发布了新的文献求助10
5秒前
wxd完成签到,获得积分10
5秒前
hhj完成签到,获得积分10
5秒前
豆豆完成签到,获得积分10
6秒前
陈某人完成签到,获得积分10
6秒前
打打应助向北游采纳,获得10
6秒前
尊敬若云完成签到 ,获得积分10
6秒前
Huang_Liuying发布了新的文献求助10
6秒前
猪猪发布了新的文献求助10
6秒前
赘婿应助鲤跃采纳,获得10
6秒前
lizy完成签到,获得积分10
6秒前
HonamC完成签到,获得积分10
6秒前
smile发布了新的文献求助10
7秒前
寻北意完成签到,获得积分10
7秒前
7秒前
chuhong完成签到 ,获得积分10
7秒前
caterpillar完成签到,获得积分10
8秒前
8秒前
李清竹发布了新的文献求助10
8秒前
科研通AI5应助李丽冰采纳,获得10
8秒前
隐形曼青应助阿喵在挖矿采纳,获得10
8秒前
蒸蒸日上发布了新的文献求助10
8秒前
9秒前
康世东发布了新的文献求助20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001275
求助须知:如何正确求助?哪些是违规求助? 4246504
关于积分的说明 13229609
捐赠科研通 4045157
什么是DOI,文献DOI怎么找? 2212990
邀请新用户注册赠送积分活动 1223162
关于科研通互助平台的介绍 1143474