USER: Unified Semantic Enhancement With Momentum Contrast for Image-Text Retrieval

计算机科学 人工智能 推论 图像检索 任务(项目管理) 水准点(测量) 自然语言处理 情报检索 图像(数学) 大地测量学 经济 管理 地理
作者
Yan Zhang,Zhong Ji,Di Wang,Yanwei Pang,Xuelong Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 595-609 被引量:21
标识
DOI:10.1109/tip.2023.3348297
摘要

As a fundamental and challenging task in bridging language and vision domains, Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality, and its key challenge is to measure the semantic similarity across different modalities. Although significant progress has been achieved, existing approaches typically suffer from two major limitations: (1) It hurts the accuracy of the representation by directly exploiting the bottom-up attention based region-level features where each region is equally treated. (2) It limits the scale of negative sample pairs by employing the mini-batch based end-to-end training mechanism. To address these limitations, we propose a Unified Semantic Enhancement Momentum Contrastive Learning (USER) method for ITR. Specifically, we delicately design two simple but effective Global representation based Semantic Enhancement (GSE) modules. One learns the global representation via the self-attention algorithm, noted as Self-Guided Enhancement (SGE) module. The other module benefits from the pre-trained CLIP module, which provides a novel scheme to exploit and transfer the knowledge from an off-the-shelf model, noted as CLIP-Guided Enhancement (CGE) module. Moreover, we incorporate the training mechanism of MoCo into ITR, in which two dynamic queues are employed to enrich and enlarge the scale of negative sample pairs. Meanwhile, a Unified Training Objective (UTO) is developed to learn from mini-batch based and dynamic queue based samples. Extensive experiments on the benchmark MSCOCO and Flickr30K datasets demonstrate the superiority of both retrieval accuracy and inference efficiency. For instance, compared with the existing best method NAAF, the metric R@1 of our USER on the MSCOCO 5K Testing set is improved by 5% and 2.4% on caption retrieval and image retrieval without any external knowledge or pre-trained model while enjoying over 60 times faster inference speed. Our source code will be released at https://github.com/zhangy0822/USER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
凶狠的纸飞机完成签到,获得积分10
1秒前
大个应助YYQYYQYYQ采纳,获得10
2秒前
2秒前
酷酷的冰淇淋完成签到 ,获得积分10
2秒前
乐乐应助YFW采纳,获得10
3秒前
愉快南琴发布了新的文献求助10
3秒前
SciGPT应助tyq采纳,获得10
3秒前
蹦蹦灯儿完成签到,获得积分10
5秒前
6秒前
思源应助明亮元柏采纳,获得30
6秒前
6秒前
7秒前
7秒前
拼搏耷发布了新的文献求助10
8秒前
充电宝应助柠檬气泡饮采纳,获得10
9秒前
9秒前
Aryac发布了新的文献求助10
11秒前
12秒前
吾身无拘发布了新的文献求助30
12秒前
Orange应助ekko采纳,获得10
12秒前
李健的小迷弟应助mk91采纳,获得10
13秒前
13秒前
浮游应助东哥采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
大白应助科研通管家采纳,获得10
14秒前
spc68应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
14秒前
spc68应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684108
求助须知:如何正确求助?哪些是违规求助? 5035205
关于积分的说明 15183583
捐赠科研通 4843435
什么是DOI,文献DOI怎么找? 2596688
邀请新用户注册赠送积分活动 1549396
关于科研通互助平台的介绍 1507893