Applications of machine learning in antibody discovery, process development, manufacturing and formulation: Current trends, challenges, and opportunities

生物制药 设计质量 过程分析技术 生物过程 过程(计算) 分析 质量(理念) 领域(数学) 自动化 制造工程 计算机科学 工程类 生物制造 上游(联网) 新产品开发 过程开发 下游(制造业) 系统工程 数据科学 生物技术 运营管理 哲学 数学 业务 计算机网络 生物 操作系统 认识论 营销 机械工程 化学工程 纯数学
作者
Thanh Tung Khuat,Robert Bassett,Ellen Otte,Alistair Grevis-James,Bogdan Gabryś
出处
期刊:Computers & Chemical Engineering [Elsevier]
卷期号:182: 108585-108585 被引量:5
标识
DOI:10.1016/j.compchemeng.2024.108585
摘要

While machine learning (ML) has made significant contributions to the biopharmaceutical field, its applications are still in the early stages in terms of providing direct support for quality-by-design based development and manufacturing of biologics, hindering the enormous potential for bioprocesses automation from their development to manufacturing. However, the adoption of ML-based models instead of conventional multivariate data analysis methods is significantly increasing due to the accumulation of large-scale production data. This trend is primarily driven by the real-time monitoring of process variables and quality attributes of biopharmaceutical products through the implementation of advanced process analytical technologies. Given the complexity and multidimensionality of a bioproduct design, bioprocess development, and product manufacturing data, ML-based approaches are increasingly being employed to achieve accurate, flexible, and high-performing predictive models to address the problems of analytics, monitoring, and control within the biopharma field. This paper aims to provide a comprehensive review of the current applications of ML solutions in the design, monitoring, control, and optimisation of upstream, downstream, and product formulation processes of monoclonal antibodies. Finally, this paper thoroughly discusses the main challenges related to the bioprocesses themselves, process data, and the use of machine learning models in monoclonal antibody process development and manufacturing. Moreover, it offers further insights into the adoption of innovative machine learning methods and novel trends in the development of new digital biopharma solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助有人采纳,获得10
刚刚
孙某人完成签到 ,获得积分0
1秒前
Rjj发布了新的文献求助10
1秒前
2秒前
毕个业完成签到 ,获得积分10
2秒前
zzzzz完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
9527完成签到,获得积分10
3秒前
reset完成签到 ,获得积分10
3秒前
4秒前
华仔应助tonya采纳,获得10
4秒前
小张就瞅瞅完成签到 ,获得积分10
5秒前
6秒前
kushdw发布了新的文献求助10
6秒前
xiaoou完成签到 ,获得积分10
6秒前
长安遗梦完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
里昂发布了新的文献求助10
8秒前
VICKY完成签到,获得积分20
10秒前
Rjj完成签到,获得积分10
11秒前
12秒前
wuchun应助isabellae采纳,获得100
12秒前
Owen应助无情的之槐采纳,获得30
14秒前
刘兰玲发布了新的文献求助20
15秒前
单纯寒荷完成签到 ,获得积分10
15秒前
16秒前
YA应助freshman3005采纳,获得30
16秒前
yaa完成签到 ,获得积分10
17秒前
kushdw完成签到,获得积分10
18秒前
sunsun10086发布了新的文献求助10
19秒前
20秒前
所所应助里昂采纳,获得10
20秒前
SimpleKwee发布了新的文献求助10
22秒前
23秒前
tonya发布了新的文献求助10
23秒前
妩媚的初晴完成签到,获得积分10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268989
求助须知:如何正确求助?哪些是违规求助? 2908595
关于积分的说明 8345992
捐赠科研通 2578746
什么是DOI,文献DOI怎么找? 1402393
科研通“疑难数据库(出版商)”最低求助积分说明 655431
邀请新用户注册赠送积分活动 634581