Modeling blood metabolite homeostatic levels reduces sample heterogeneity across cohorts

代谢组学 代谢物 代谢组 生物 计算生物学 生物信息学 生物化学
作者
D. Liu,G. A. Nagana Gowda,Zhongli Jiang,Kangni Alemdjrodo,Min Zhang,Dabao Zhang,Daniel Raftery
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (8)
标识
DOI:10.1073/pnas.2307430121
摘要

Blood metabolite levels are affected by numerous factors, including preanalytical factors such as collection methods and geographical sites. These perturbations have caused deleterious consequences for many metabolomics studies and represent a major challenge in the metabolomics field. It is important to understand these factors and develop models to reduce their perturbations. However, to date, the lack of suitable mathematical models for blood metabolite levels under homeostasis has hindered progress. In this study, we develop quantitative models of blood metabolite levels in healthy adults based on multisite sample cohorts that mimic the current challenge. Five cohorts of samples obtained across four geographically distinct sites were investigated, focusing on approximately 50 metabolites that were quantified using 1 H NMR spectroscopy. More than one-third of the variation in these metabolite profiles is due to cross-cohort variation. A dramatic reduction in the variation of metabolite levels (90%), especially their site-to-site variation (95%), was achieved by modeling each metabolite using demographic and clinical factors and especially other metabolites, as observed in the top principal components. The results also reveal that several metabolites contribute disproportionately to such variation, which could be explained by their association with biological pathways including biosynthesis and degradation. The study demonstrates an intriguing network effect of metabolites that can be utilized to better define homeostatic metabolite levels, which may have implications for improved health monitoring. As an example of the potential utility of the approach, we show that modeling gender-related metabolic differences retains the interesting variance while reducing unwanted (site-related) variance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
典雅的十八完成签到,获得积分10
刚刚
张才豪完成签到,获得积分10
1秒前
1秒前
靳予完成签到,获得积分10
1秒前
放空鬼马完成签到,获得积分10
1秒前
赘婿应助Jacky采纳,获得10
2秒前
科研通AI2S应助佳沫采纳,获得10
2秒前
3秒前
iUi给iUi的求助进行了留言
3秒前
3秒前
3秒前
Zhou完成签到,获得积分10
5秒前
科目三应助务实仙人掌采纳,获得10
6秒前
ding应助避橙采纳,获得10
6秒前
7秒前
虚幻哦哦完成签到,获得积分20
7秒前
大个应助快乐小狗采纳,获得10
7秒前
好好读书好好完成签到 ,获得积分10
8秒前
精分的猫发布了新的文献求助10
8秒前
8秒前
开放菀完成签到 ,获得积分10
9秒前
9秒前
哈哈哈完成签到,获得积分10
10秒前
Akim应助无限静珊采纳,获得10
10秒前
康兴宇完成签到 ,获得积分10
10秒前
陌路完成签到,获得积分10
11秒前
11秒前
酷波er应助zz采纳,获得10
11秒前
11秒前
12秒前
12秒前
哈哈哈发布了新的文献求助10
12秒前
南鸢发布了新的文献求助10
12秒前
13秒前
爆米花应助5114采纳,获得10
13秒前
科研小民工完成签到,获得积分10
13秒前
繁荣的凡英完成签到,获得积分10
14秒前
阳光海云应助Jacky采纳,获得10
14秒前
小巧的映易完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156574
求助须知:如何正确求助?哪些是违规求助? 2808051
关于积分的说明 7875794
捐赠科研通 2466300
什么是DOI,文献DOI怎么找? 1312843
科研通“疑难数据库(出版商)”最低求助积分说明 630280
版权声明 601919