Revealing the drivers of surface ozone pollution by explainable machine learning and satellite observations in Hangzhou Bay, China

环境科学 海湾 卫星 污染 气象学 大气科学 中国 臭氧 气候学 地质学 地理 海洋学 生态学 考古 航空航天工程 工程类 生物
作者
Tianen Yao,Sihua Lu,Yaqi Wang,X. Li,Huaixiao Ye,Yusen Duan,Qingyan Fu,Jing Li
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:440: 140938-140938 被引量:2
标识
DOI:10.1016/j.jclepro.2024.140938
摘要

Surface ozone (O3) pollution is an emerging concern in China. Hangzhou Bay (HZB), where the petrochemical industry is clustered, has become one of China's most O3 polluted areas due to exposure to volatile organic compounds (VOCs) emissions and land-sea breezes. It is urgently need to investigate the multiple drivers of surface O3 generation in HZB more specifically. The spatial distribution of O3 trends from April to September (2015–2022) in HZB depicts a general upward trend, with an observed trend of 0.26 μg/m3 a−1, where meteorological factors contribute to 54°% based on the stepwise multiple linear regression (MLR). Ensembled machine learning is more efficient and accurate, especially the Light Gradient Boosting model (LightGBM, R2 = 0.84) outperforms other machine learning algorithms. The Shapley additive explanation (SHAP) technique allows for more in-depth quantification of the contribution of specific factors to O3 trends. The results of the LightGBM-SHAP algorithm present that solar radiation plays a leading role in O3 generation. More importantly, stronger solar radiation can still lead to high O3 concentration accumulation even at lower temperature based on the interaction of SHAP values. For the precursor's emissions, the ratio of formaldehyde-to-NO2 (HCHO/NO2) obtained from the Tropospheric Monitoring Instrument (TROPOMI) satellite observations, shows the study area is located in the VOCs-limited and transitional regimes, highlighting that VOCs control is more cost-effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林林发布了新的文献求助10
1秒前
1秒前
三木发布了新的文献求助10
1秒前
2秒前
丘比特应助lfg采纳,获得10
2秒前
zhugepengju完成签到,获得积分10
2秒前
teamwang发布了新的文献求助10
2秒前
善学以致用应助螺蛳粉采纳,获得10
3秒前
zhangst发布了新的文献求助10
3秒前
3秒前
renpp完成签到,获得积分10
3秒前
3秒前
3秒前
江哥完成签到,获得积分10
4秒前
FashionBoy应助lyf采纳,获得10
4秒前
4秒前
nimama完成签到,获得积分10
5秒前
好好学习发布了新的文献求助10
5秒前
5秒前
6秒前
小蘑菇应助王辰睿采纳,获得10
6秒前
6秒前
简单完成签到,获得积分10
6秒前
7秒前
Gauss完成签到,获得积分0
8秒前
enen完成签到,获得积分10
8秒前
9秒前
科目三应助生sheng采纳,获得10
9秒前
bkagyin应助klklk采纳,获得10
9秒前
Vresty完成签到,获得积分10
9秒前
9秒前
9秒前
LUZIYI完成签到,获得积分10
10秒前
深情安青应助7473采纳,获得10
10秒前
yuayua发布了新的文献求助10
11秒前
胖Q发布了新的文献求助10
11秒前
无花果应助贪玩绮山采纳,获得10
11秒前
12秒前
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144703
求助须知:如何正确求助?哪些是违规求助? 2796148
关于积分的说明 7818215
捐赠科研通 2452316
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449