Large-Scale Preparation of Mechanically High-Performance and Biodegradable PLA/PHBV Melt-Blown Nonwovens with Nanofibers

聚乳酸 材料科学 极限抗拉强度 复合材料 韧性 纳米纤维 结晶度 聚丙烯 可生物降解聚合物 结晶 聚合物 化学工程 工程类
作者
Gaohui Liu,Jie Guan,Xianfeng Wang,Jianyong Yu,Bin Ding
出处
期刊:Engineering [Elsevier]
卷期号:39: 244-252 被引量:6
标识
DOI:10.1016/j.eng.2023.02.021
摘要

Biodegradable polylactic acid (PLA) melt-blown nonwovens are attractive candidates to replace non-degradable polypropylene melt-blown nonwovens. However, it is still an extremely challenging task to prepare PLA melt-blown nonwovens with sufficient mechanical properties for practical application. Herein, we report a simple strategy for the large-scale preparation of biodegradable PLA/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) melt-blown nonwovens with high strength and excellent toughness. In this process, a small amount of PHBV is added to PLA to improve the latter's crystallization rate and crystallinity. In addition, when the PHBV content increases from 0 to 7.5 wt%, the diameters of the PLA/PHBV melt-blown fibers decrease significantly (with the+ proportion of nanofibers increasing from 7.7% to 42.9%). The resultant PLA/PHBV (5 wt% PHBV) melt-blown nonwovens exhibit the highest mechanical properties. The tensile stress, elongation, and toughness of PLA/PHBV (5 wt% PHBV) melt-blown nonwovens reach 2.5 MPa, 45%, and 1.0 MJ·m–3, respectively. More importantly, PLA/PHBV melt-blown nonwovens can be completely degraded into carbon dioxide and water after 4 months in the soil, making them environmentally friendly. A general tensile-failure model of melt-blown nonwovens is proposed in this study, which may shed light on mechanical performance enhancement for nonwovens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助不凡采纳,获得30
刚刚
顾矜应助坚定的亦绿采纳,获得10
1秒前
1秒前
yu完成签到,获得积分10
1秒前
Chris完成签到,获得积分10
2秒前
cookie发布了新的文献求助10
3秒前
胖仔完成签到,获得积分10
3秒前
Chan0501完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
duxinyue发布了新的文献求助10
5秒前
汉堡转转转完成签到,获得积分10
6秒前
喵酱发布了新的文献求助30
6秒前
6666完成签到,获得积分10
6秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
7秒前
wjn完成签到,获得积分10
7秒前
8秒前
竹子完成签到,获得积分10
8秒前
MAKEYF完成签到 ,获得积分10
8秒前
9秒前
Owen应助猪猪hero采纳,获得10
9秒前
10秒前
CipherSage应助海棠yiyi采纳,获得50
11秒前
Khr1stINK发布了新的文献求助10
11秒前
11秒前
脑洞疼应助卡卡采纳,获得10
11秒前
11秒前
Rrr发布了新的文献求助10
12秒前
科研通AI5应助zmy采纳,获得10
13秒前
William鉴哲发布了新的文献求助10
13秒前
情怀应助只道寻常采纳,获得10
14秒前
14秒前
cyy完成签到,获得积分20
14秒前
orixero应助小庄采纳,获得10
15秒前
16秒前
侦察兵发布了新的文献求助10
16秒前
司徒元瑶完成签到 ,获得积分10
16秒前
梓榆发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794