KnowLog: Knowledge Enhanced Pre-trained Language Model for Log Understanding

计算机科学 自然语言理解 自然语言处理 术语 语言模型 杠杆(统计) 利用 文档 人工智能 自然语言 数据科学 机器学习 哲学 语言学 计算机安全 程序设计语言
作者
Lipeng Ma,Weidong Yang,Bo Xu,Sihang Jiang,Ben Fei,Jiaqing Liang,M. Zhou,Yanghua Xiao
标识
DOI:10.1145/3597503.3623304
摘要

Logs as semi-structured text are rich in semantic information, making their comprehensive understanding crucial for automated log analysis. With the recent success of pre-trained language models in natural language processing, many studies have leveraged these models to understand logs. Despite their successes, existing pre-trained language models still suffer from three weaknesses. Firstly, these models fail to understand domain-specific terminology, especially abbreviations. Secondly, these models struggle to adequately capture the complete log context information. Thirdly, these models have difficulty in obtaining universal representations of different styles of the same logs. To address these challenges, we introduce KnowLog, a knowledge-enhanced pre-trained language model for log understanding. Specifically, to solve the previous two challenges, we exploit abbreviations and natural language descriptions of logs from public documentation as local and global knowledge, respectively, and leverage this knowledge by designing novel pre-training tasks for enhancing the model. To solve the last challenge, we design a contrastive learning-based pre-training task to obtain universal representations. We evaluate KnowLog by fine-tuning it on six different log understanding tasks. Extensive experiments demonstrate that KnowLog significantly enhances log understanding and achieves state-of-the-art results compared to existing pre-trained language models without knowledge enhancement. Moreover, we conduct additional experiments in transfer learning and low-resource scenarios, showcasing the substantial advantages of KnowLog. Our source code and detailed experimental data are available at https://github.com/LeaperOvO/KnowLog.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
taster完成签到,获得积分10
1秒前
桐桐应助代纤绮采纳,获得10
1秒前
JamesPei应助ㄣ兲天幵鈊ゞ采纳,获得10
1秒前
2秒前
Imxiaofan发布了新的文献求助30
2秒前
可靠从云发布了新的文献求助10
4秒前
5秒前
5秒前
葡萄成熟应助12采纳,获得10
6秒前
6秒前
6秒前
猫大熊发布了新的文献求助10
6秒前
gjww应助哇哇的采纳,获得10
6秒前
隐形曼青应助陈梦鼠采纳,获得10
7秒前
H喜欢老霉完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
汉堡包应助成就含之采纳,获得10
9秒前
10秒前
大个应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
黄茹应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
科研通AI2S应助生动白莲采纳,获得20
12秒前
Imxiaofan完成签到,获得积分10
12秒前
12秒前
lumous发布了新的文献求助10
12秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207318
求助须知:如何正确求助?哪些是违规求助? 2856706
关于积分的说明 8106534
捐赠科研通 2521854
什么是DOI,文献DOI怎么找? 1355242
科研通“疑难数据库(出版商)”最低求助积分说明 642199
邀请新用户注册赠送积分活动 613478