Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware

神经形态工程学 记忆电阻器 材料科学 联想学习 内容寻址存储器 结合属性 神经科学 电子工程 计算机科学 工程类 人工神经网络 人工智能 数学 生物 纯数学
作者
Wenxiao Wang,Yaqi Wang,Feifei Yin,Hongsen Niu,Young Kee Shin,Yang Li,Eun‐Seong Kim,Nam‐Young Kim
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1): 133-133 被引量:42
标识
DOI:10.1007/s40820-024-01338-z
摘要

Abstract Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO 2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贤仔完成签到,获得积分10
刚刚
邓佳鑫Alan应助zhang采纳,获得10
刚刚
充电宝应助健壮慕梅采纳,获得10
1秒前
爆米花应助炙热秋翠采纳,获得10
1秒前
曾经的碧萱完成签到,获得积分10
3秒前
蟹老板完成签到,获得积分10
3秒前
星辰大海应助高挑的雨雪采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
浮游应助wen采纳,获得10
5秒前
5秒前
小铃铛完成签到,获得积分10
8秒前
云海老完成签到,获得积分10
8秒前
正直的博完成签到,获得积分10
9秒前
眼睛大的从雪完成签到,获得积分10
9秒前
蟹老板发布了新的文献求助20
9秒前
lnpuzgz完成签到 ,获得积分10
10秒前
10秒前
正直的博发布了新的文献求助10
11秒前
12秒前
小蘑菇应助枝枝采纳,获得10
12秒前
CodeCraft应助wkk417采纳,获得10
15秒前
桐桐应助曾经的碧萱采纳,获得10
15秒前
16秒前
xiaopu发布了新的文献求助10
16秒前
浮游应助高大的未来采纳,获得10
17秒前
英姑应助烂漫夜梦采纳,获得30
17秒前
18秒前
狗十七发布了新的文献求助20
18秒前
无花果应助标致贞采纳,获得10
18秒前
20秒前
111完成签到 ,获得积分10
20秒前
deallyxyz完成签到,获得积分0
20秒前
范森林完成签到 ,获得积分10
20秒前
20秒前
万能图书馆应助物语采纳,获得10
21秒前
22秒前
高大的未来完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460995
求助须知:如何正确求助?哪些是违规求助? 4566103
关于积分的说明 14303321
捐赠科研通 4491747
什么是DOI,文献DOI怎么找? 2460462
邀请新用户注册赠送积分活动 1449774
关于科研通互助平台的介绍 1425554