Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware

神经形态工程学 记忆电阻器 材料科学 联想学习 内容寻址存储器 结合属性 神经科学 电子工程 计算机科学 工程类 人工神经网络 人工智能 数学 生物 纯数学
作者
Wenxiao Wang,Yaqi Wang,Feifei Yin,Hongsen Niu,Young Kee Shin,Yang Li,Eun‐Seong Kim,Nam‐Young Kim
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1): 133-133 被引量:42
标识
DOI:10.1007/s40820-024-01338-z
摘要

Abstract Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO 2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuhangli完成签到,获得积分10
1秒前
1秒前
Yaxin完成签到,获得积分20
2秒前
2秒前
情怀应助文艺水风采纳,获得10
2秒前
大方的白开水完成签到,获得积分10
2秒前
神勇友灵完成签到,获得积分0
2秒前
小v完成签到 ,获得积分10
2秒前
wx发布了新的文献求助30
2秒前
3秒前
niuniu顺利毕业完成签到 ,获得积分10
3秒前
zdd完成签到 ,获得积分10
3秒前
zzz完成签到 ,获得积分10
3秒前
852应助su采纳,获得10
3秒前
4秒前
4秒前
4秒前
温暖的天与完成签到 ,获得积分10
5秒前
铁树完成签到,获得积分10
5秒前
魅雪霓完成签到,获得积分10
5秒前
子轩发布了新的文献求助10
5秒前
5秒前
5秒前
等待傲旋完成签到 ,获得积分10
5秒前
kingyuan完成签到,获得积分10
6秒前
北沐城歌完成签到,获得积分10
7秒前
youda完成签到 ,获得积分10
7秒前
hhhhhyc完成签到 ,获得积分10
8秒前
8秒前
feiCheung完成签到 ,获得积分10
8秒前
cchuang完成签到,获得积分10
8秒前
bing发布了新的文献求助10
8秒前
嵇丹雪完成签到,获得积分10
9秒前
9秒前
符语风完成签到 ,获得积分10
9秒前
9秒前
海中有月完成签到,获得积分10
9秒前
9秒前
HMM完成签到,获得积分10
9秒前
小丁发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439089
求助须知:如何正确求助?哪些是违规求助? 4550156
关于积分的说明 14222807
捐赠科研通 4471098
什么是DOI,文献DOI怎么找? 2450208
邀请新用户注册赠送积分活动 1441127
关于科研通互助平台的介绍 1417762