Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware

神经形态工程学 记忆电阻器 材料科学 联想学习 内容寻址存储器 结合属性 神经科学 电子工程 计算机科学 工程类 人工神经网络 人工智能 数学 纯数学 生物
作者
Wenxiao Wang,Yaqi Wang,Feifei Yin,Hongsen Niu,Young Kee Shin,Yang Li,Eun‐Seong Kim,Nam‐Young Kim
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1) 被引量:12
标识
DOI:10.1007/s40820-024-01338-z
摘要

Abstract Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO 2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scxl2000完成签到,获得积分10
1秒前
1秒前
oyc完成签到,获得积分10
1秒前
1秒前
1秒前
Leexxxhaoo发布了新的文献求助10
2秒前
FFFFFFF完成签到,获得积分10
2秒前
2秒前
LIU发布了新的文献求助10
2秒前
小二郎应助医路有你采纳,获得10
2秒前
研友_VZG7GZ应助卡顿公开采纳,获得10
2秒前
可爱的函函应助一直采纳,获得20
2秒前
ufuon完成签到,获得积分10
3秒前
VDC应助MrFamous采纳,获得50
4秒前
娜行发布了新的文献求助10
4秒前
啦啦鱼完成签到 ,获得积分10
4秒前
4秒前
5秒前
习习发布了新的文献求助10
5秒前
5秒前
wanci应助drizzling采纳,获得10
5秒前
r93527005完成签到,获得积分10
5秒前
6秒前
霸气谷蕊完成签到 ,获得积分10
8秒前
羊羊羊完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI5应助WNL采纳,获得10
9秒前
Xuu完成签到,获得积分10
9秒前
外向的沅发布了新的文献求助10
9秒前
徐慕源发布了新的文献求助10
9秒前
夏哈哈完成签到 ,获得积分10
10秒前
默默海露完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
迷路安阳发布了新的文献求助10
12秒前
12秒前
NexusExplorer应助Jolene66采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678