Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware

神经形态工程学 记忆电阻器 材料科学 联想学习 内容寻址存储器 结合属性 神经科学 电子工程 计算机科学 工程类 人工神经网络 人工智能 数学 生物 纯数学
作者
Wenxiao Wang,Yaqi Wang,Feifei Yin,Hongsen Niu,Young Kee Shin,Yang Li,Eun‐Seong Kim,Nam‐Young Kim
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1): 133-133 被引量:42
标识
DOI:10.1007/s40820-024-01338-z
摘要

Abstract Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO 2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
香蕉觅云应助追光少年采纳,获得10
刚刚
WN发布了新的文献求助10
1秒前
大模型应助Leonard采纳,获得10
1秒前
1秒前
海洋球发布了新的文献求助10
2秒前
小小发布了新的文献求助10
2秒前
3秒前
vvvvvv发布了新的文献求助10
3秒前
4秒前
benbengouj完成签到,获得积分10
4秒前
wh完成签到,获得积分10
4秒前
小落看不完完成签到 ,获得积分10
4秒前
大个应助linlinWang采纳,获得10
5秒前
邓佳鑫Alan应助懒人采纳,获得10
5秒前
Disguise完成签到 ,获得积分10
5秒前
日月小完成签到,获得积分10
5秒前
A1youWe发布了新的文献求助10
5秒前
diu完成签到,获得积分10
5秒前
风清扬发布了新的文献求助10
6秒前
平淡访冬完成签到,获得积分10
6秒前
柴六斤发布了新的文献求助10
6秒前
啊就是地方就啊都是完成签到,获得积分10
6秒前
7秒前
7秒前
爱听歌的夏烟完成签到,获得积分10
7秒前
8秒前
堪雅寒完成签到,获得积分10
8秒前
spring079完成签到,获得积分10
8秒前
8秒前
linliqing完成签到,获得积分10
8秒前
8秒前
JamesPei应助happiness采纳,获得10
8秒前
flying蝈蝈完成签到,获得积分10
8秒前
vvvvvv完成签到,获得积分10
9秒前
9秒前
热心乐驹完成签到,获得积分10
10秒前
念念完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439