Tailoring Classical Conditioning Behavior in TiO2 Nanowires: ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware

神经形态工程学 记忆电阻器 材料科学 联想学习 内容寻址存储器 结合属性 神经科学 电子工程 计算机科学 工程类 人工神经网络 人工智能 数学 生物 纯数学
作者
Wenxiao Wang,Yaqi Wang,Feifei Yin,Hongsen Niu,Young Kee Shin,Yang Li,Eun‐Seong Kim,Nam‐Young Kim
出处
期刊:Nano-micro Letters [Springer Science+Business Media]
卷期号:16 (1): 133-133 被引量:42
标识
DOI:10.1007/s40820-024-01338-z
摘要

Abstract Neuromorphic hardware equipped with associative learning capabilities presents fascinating applications in the next generation of artificial intelligence. However, research into synaptic devices exhibiting complex associative learning behaviors is still nascent. Here, an optoelectronic memristor based on Ag/TiO 2 Nanowires: ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors. Effective implementation of synaptic behaviors, including long and short-term plasticity, and learning-forgetting-relearning behaviors, were achieved in the device through the application of light and electrical stimuli. Leveraging the optoelectronic co-modulated characteristics, a simulation of neuromorphic computing was conducted, resulting in a handwriting digit recognition accuracy of 88.9%. Furthermore, a 3 × 7 memristor array was constructed, confirming its application in artificial visual memory. Most importantly, complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli, respectively. After training through associative pairs, reflexes could be triggered solely using light stimuli. Comprehensively, under specific optoelectronic signal applications, the four features of classical conditioning, namely acquisition, extinction, recovery, and generalization, were elegantly emulated. This work provides an optoelectronic memristor with associative behavior capabilities, offering a pathway for advancing brain-machine interfaces, autonomous robots, and machine self-learning in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕易完成签到 ,获得积分10
刚刚
JevonCheung完成签到 ,获得积分0
1秒前
2秒前
xsq完成签到,获得积分10
3秒前
尊敬的萝莉完成签到,获得积分10
3秒前
5秒前
走走发布了新的文献求助10
5秒前
growl完成签到,获得积分10
5秒前
5秒前
wjy321完成签到,获得积分10
7秒前
上官若男应助芳芳采纳,获得10
7秒前
青耕完成签到,获得积分10
7秒前
XZZ完成签到 ,获得积分10
7秒前
机灵水池完成签到,获得积分10
7秒前
冯宇松完成签到,获得积分20
8秒前
sarah完成签到,获得积分10
9秒前
LY完成签到,获得积分10
10秒前
顾矜应助濠哥妈咪采纳,获得10
10秒前
Huang完成签到,获得积分10
10秒前
flipped完成签到,获得积分10
10秒前
CMD完成签到 ,获得积分10
11秒前
张琨完成签到 ,获得积分10
11秒前
whandzxl完成签到,获得积分10
11秒前
youyuguang完成签到 ,获得积分10
13秒前
15秒前
15秒前
满意外套完成签到,获得积分10
16秒前
chen完成签到 ,获得积分10
16秒前
执着新蕾完成签到,获得积分10
18秒前
桐桐应助七兮采纳,获得10
18秒前
18秒前
didi完成签到 ,获得积分10
18秒前
18秒前
猪猪hero发布了新的文献求助10
19秒前
丘比特应助芳芳采纳,获得10
19秒前
油麦菜完成签到 ,获得积分10
19秒前
19秒前
不过尔尔完成签到 ,获得积分10
20秒前
嘟嘟雯完成签到 ,获得积分10
20秒前
小恶于完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256647
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753264
捐赠科研通 4292005
什么是DOI,文献DOI怎么找? 2355253
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312455