Research on the mechanism of the two-dimensional ultrasonic surface burnishing process to enhance the wear resistance for aluminum alloy

材料科学 微观结构 纳米结构 电子背散射衍射 复合材料 抛光(金属) 严重塑性变形 冶金 变形机理 变形(气象学) 合金 纳米技术 抛光
作者
Zhenyu Zhou,Qiu-Yang Zheng,Li Yu,Cong Ding,Guangjian Peng,Zhongyu Piao
出处
期刊:Friction [Springer Nature]
卷期号:12 (3): 490-509 被引量:15
标识
DOI:10.1007/s40544-021-0777-z
摘要

Abstract The gradient nanostructure is machined on the aluminum (Al) alloy by the two-dimensional ultrasonic surface burnishing process (2D-USBP). The mechanism of why the gradient nanostructure enhances wear resistance is investigated. The mechanical properties and microstructure characterization for the gradient nanostructure are performed by operating a nanoindenter, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD). Dry wear tests are performed on the samples before and after machining to evaluate the wear resistance and mechanisms. The effect of the gradient nanostructure on the wear resistance is explored by developing the crystal plasticity (CP) finite element and molecular dynamics (MD) models. The characterization results show that the 2D-USBP sample prepared a gradient structure of ∼600 µm thick on the aluminum surface, increasing the surface hardness from 1.13 to 1.71 GPa and reducing the elastic modulus from 78.84 to 70.14 GPa. The optimization of the surface microstructure and the increase of the mechanical properties effectively enhance the wear resistance of the sample, with 41.20%, 39.07%, and 54.58% of the wear scar areas for the 2D-USBP treated samples to the original samples under 5, 10, and 15 N loads, respectively. The gradient nanostructure hinders the slip of dislocations inside the sample during the wear process and reduces the size and scope of plastic deformation; meanwhile, the resistance to deformation, adhesion, and crack initiation and propagation of the sample surface is improved, resulting in enhanced wear resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
今后应助andy采纳,获得10
2秒前
5秒前
LYY发布了新的文献求助10
5秒前
噜啦噜啦嘞完成签到,获得积分10
6秒前
彩色伯云发布了新的文献求助30
8秒前
海4015发布了新的文献求助10
9秒前
10秒前
12秒前
瘪良科研完成签到,获得积分10
16秒前
大海发布了新的文献求助10
16秒前
17秒前
科研通AI2S应助安详的冰彤采纳,获得10
20秒前
23秒前
24秒前
15867589086发布了新的文献求助10
30秒前
Caism发布了新的文献求助10
31秒前
Shueason完成签到 ,获得积分10
33秒前
英俊的铭应助魔幻的依云采纳,获得10
35秒前
小景007完成签到,获得积分10
36秒前
chloe发布了新的文献求助10
36秒前
15867589086完成签到,获得积分10
38秒前
徐安琪完成签到,获得积分10
38秒前
彩色伯云完成签到,获得积分10
39秒前
华仔应助balabala采纳,获得10
39秒前
tomorrow505应助nnnn采纳,获得10
41秒前
星星点灯完成签到,获得积分20
42秒前
英姑应助Niu采纳,获得10
45秒前
48秒前
Jasper应助chloe采纳,获得10
48秒前
鲤鱼远望发布了新的文献求助10
51秒前
冰凌心恋发布了新的文献求助10
52秒前
Caism完成签到,获得积分10
53秒前
英俊的铭应助科研通管家采纳,获得10
55秒前
Leif应助科研通管家采纳,获得10
55秒前
共享精神应助科研通管家采纳,获得10
55秒前
一一应助科研通管家采纳,获得10
55秒前
55秒前
Akim应助科研通管家采纳,获得10
55秒前
55秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340656
求助须知:如何正确求助?哪些是违规求助? 2968590
关于积分的说明 8634286
捐赠科研通 2648111
什么是DOI,文献DOI怎么找? 1450010
科研通“疑难数据库(出版商)”最低求助积分说明 671649
邀请新用户注册赠送积分活动 660693