Research on the mechanism of the two-dimensional ultrasonic surface burnishing process to enhance the wear resistance for aluminum alloy

材料科学 微观结构 纳米结构 电子背散射衍射 复合材料 抛光(金属) 严重塑性变形 冶金 变形机理 变形(气象学) 合金 纳米技术 抛光
作者
Zhenyu Zhou,Qiu-Yang Zheng,Li Yu,Cong Ding,Guangjian Peng,Zhongyu Piao
出处
期刊:Friction [Springer Nature]
卷期号:12 (3): 490-509 被引量:15
标识
DOI:10.1007/s40544-021-0777-z
摘要

Abstract The gradient nanostructure is machined on the aluminum (Al) alloy by the two-dimensional ultrasonic surface burnishing process (2D-USBP). The mechanism of why the gradient nanostructure enhances wear resistance is investigated. The mechanical properties and microstructure characterization for the gradient nanostructure are performed by operating a nanoindenter, transmission electron microscopy (TEM), and electron backscattered diffraction (EBSD). Dry wear tests are performed on the samples before and after machining to evaluate the wear resistance and mechanisms. The effect of the gradient nanostructure on the wear resistance is explored by developing the crystal plasticity (CP) finite element and molecular dynamics (MD) models. The characterization results show that the 2D-USBP sample prepared a gradient structure of ∼600 µm thick on the aluminum surface, increasing the surface hardness from 1.13 to 1.71 GPa and reducing the elastic modulus from 78.84 to 70.14 GPa. The optimization of the surface microstructure and the increase of the mechanical properties effectively enhance the wear resistance of the sample, with 41.20%, 39.07%, and 54.58% of the wear scar areas for the 2D-USBP treated samples to the original samples under 5, 10, and 15 N loads, respectively. The gradient nanostructure hinders the slip of dislocations inside the sample during the wear process and reduces the size and scope of plastic deformation; meanwhile, the resistance to deformation, adhesion, and crack initiation and propagation of the sample surface is improved, resulting in enhanced wear resistance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助知尘采纳,获得10
1秒前
英俊的铭应助cherry采纳,获得10
1秒前
1秒前
1秒前
霜糖完成签到,获得积分10
1秒前
1秒前
生动的大侠完成签到,获得积分10
2秒前
明亮飞丹完成签到,获得积分10
2秒前
852应助尊敬的皮带采纳,获得10
2秒前
华仔应助Nara2021采纳,获得10
2秒前
大萱完成签到,获得积分10
2秒前
spring发布了新的文献求助10
2秒前
Ye发布了新的文献求助10
2秒前
2秒前
3秒前
大模型应助微笑易绿采纳,获得10
3秒前
4秒前
科目三应助六六采纳,获得10
4秒前
科研通AI6应助白菜也挺贵采纳,获得10
4秒前
小鲨鱼发布了新的文献求助10
4秒前
YZQ发布了新的文献求助10
5秒前
lilili应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
leishenwang发布了新的文献求助10
5秒前
asdfzxcv应助科研通管家采纳,获得10
5秒前
科研通AI6应助123采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
感动雪糕完成签到 ,获得积分10
5秒前
大个应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652297
求助须知:如何正确求助?哪些是违规求助? 4787231
关于积分的说明 15059377
捐赠科研通 4810953
什么是DOI,文献DOI怎么找? 2573500
邀请新用户注册赠送积分活动 1529327
关于科研通互助平台的介绍 1488227