Latent tree analysis for the identification and differentiation of evidence-based Traditional Chinese Medicine diagnostic patterns: A primer for clinicians

鉴定(生物学) 中医药 医学诊断 医学 数据挖掘 计算机科学 人工智能 模式识别(心理学) 替代医学 病理 植物 生物
作者
Leonard Ho,Nevin L Zhang,Yulong Xu,Fai Fai Ho,Xinyin Wu,Shuijiao Chen,Xiaowei Liu,Wing Fai Yeung,Justin CY Wu,Vincent CH Chung
出处
期刊:Phytomedicine [Elsevier]
卷期号:106: 154392-154392 被引量:5
标识
DOI:10.1016/j.phymed.2022.154392
摘要

A supplementary chapter on the diagnostic patterns of Traditional Medicine, including Traditional Chinese Medicine (TCM), was introduced into the latest edition of the International Classification of Diseases (ICD-11). However, evidence-based rules are yet to be developed for pattern differentiation in patients with specific conventional medicine diagnoses. Without such standardised rules, the level of diagnostic agreement amongst practitioners is unsatisfactory. This may reduce the reliability of practice and the generalisability of clinical research.Using cross-sectional study data from patients with functional dyspepsia, we reviewed and illustrated a quantitative approach that combines TCM expertise and computer algorithmic capacity, namely latent tree analysis (LTA), to establish score-based pattern differentiation rules.LTA consists of six major steps: (i) the development of a TCM clinical feature questionnaire; (ii) statistical pattern discovery; (iii) statistical pattern interpretation; (iv) TCM diagnostic pattern identification; (v) TCM diagnostic pattern quantification; and (vi) TCM diagnostic pattern differentiation. Step (i) involves the development of a comprehensive questionnaire covering all essential TCM clinical features of the disease of interest via a systematic review. Step (ii) to (iv) required input from TCM experts, with the algorithmic capacity provided by Lantern, a dedicated software for TCM LTA.LTA is used to quantify the diagnostic importance of various clinical features in each TCM diagnostic pattern in terms of mutual information and cumulative information coverage. LTA is also capable of deriving score-based differentiation rules for each TCM diagnostic pattern, with each clinical feature being provided with a numerical score for its presence. Subsequently, a summative threshold is generated to allow pattern differentiation. If the total score of a patient exceeded the threshold, the patient was diagnosed with that particular TCM diagnostic pattern.LTA is a quantitative approach to improving the inter-rater reliability of TCM diagnosis and addressing the current lack of objectivity in the ICD-11. Future research should focus on how diagnostic information should be coupled with effectiveness evidence derived from network meta-analysis. This will enable the development of an implementable diagnostics-to-treatment scheme for further evaluation. If successful, this scheme will transform TCM practice in an evidence-based manner, while preserving the validity of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的草莓完成签到 ,获得积分10
1秒前
4秒前
siyarn完成签到,获得积分10
5秒前
球球完成签到,获得积分10
9秒前
甜甜玫瑰应助许诺采纳,获得10
10秒前
gengxw完成签到,获得积分10
10秒前
斯文败类应助微风采纳,获得10
11秒前
无花果应助威武的香岚采纳,获得10
12秒前
13秒前
文献缺缺应助familiar_people采纳,获得10
16秒前
5160完成签到,获得积分10
16秒前
17秒前
20秒前
波波鱼完成签到,获得积分10
21秒前
23秒前
orixero应助zzzzzzy采纳,获得10
24秒前
奋斗的宛亦完成签到,获得积分20
26秒前
研友_LMyRPL发布了新的文献求助10
27秒前
王卫完成签到,获得积分10
28秒前
zhang08完成签到,获得积分10
30秒前
34秒前
36秒前
38秒前
zzzzzzy发布了新的文献求助10
39秒前
42秒前
夏山发布了新的文献求助10
44秒前
44秒前
纯真的诗兰完成签到,获得积分10
48秒前
48秒前
51秒前
zty完成签到,获得积分10
52秒前
幕帆应助夏山采纳,获得10
54秒前
55秒前
zzzzzzy完成签到,获得积分20
55秒前
孙小雨完成签到,获得积分10
55秒前
56秒前
1分钟前
1分钟前
sxy完成签到,获得积分10
1分钟前
杨丽婷完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396278
求助须知:如何正确求助?哪些是违规求助? 3006111
关于积分的说明 8819637
捐赠科研通 2693161
什么是DOI,文献DOI怎么找? 1475149
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675566