Crude Oil Blending Process Optimization with Precise Consideration of Fraction Properties

炼油厂 分数(化学) 工艺工程 炼油厂 过程(计算) 调度(生产过程) 工艺优化 原油 在制品 计算机科学 工程类 石油工程 废物管理 运营管理 化学 操作系统 环境工程 有机化学
作者
Z.H.E.N.G. Wanpeng,G.A.O. Xiaoyong,K.U.I. Guofeng,Z.U.O. Xin,Z.H.U. Guiyao,X.I.E. Yi
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 1087-1092 被引量:1
标识
DOI:10.1016/b978-0-323-85159-6.50181-0
摘要

Crude oil blending process is an integral part of the petroleum supply chain, including multiple industrial processes such as crude oil distribution, transportation, storage and blending in the production process of refinery enterprises. The optimization of crude oil blending process scheduling has high academic and industrial application value, and its related research work is currently a hot topic of academic interest. However, there are still urgent problems to be solved in the current research work. Crude oil blending process not only needs to consider a variety of delivery and distribution of crude oil, but also considers the constraint conditions that the blended product meets the production demand. Therefore, based on the continuous-time representation, a crude oil blending optimization model that precisely considers the properties of the fraction is proposed in this paper. Firstly, the important achievements in the research field of crude oil blending process optimization are briefly introduced, and the development trend and defects of the current research work are summarized. Subsequently, the MINLP model is described in detail. The model especially considers the properties demand and supply demand of mixed products in the secondary process. Finally, we verified the effectiveness of the proposed model in solving the actual blending formula optimization problem. The simulation results of a real case of a fuel refinery show that a product formulation is used to optimize the crude oil blending process, which can effectively improve the overall yield of petroleum fractions while meeting the demands of the secondary processing device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助EED采纳,获得10
1秒前
华仔应助任性的凝云采纳,获得10
1秒前
yyy发布了新的文献求助10
3秒前
李健应助111采纳,获得10
3秒前
赘婿应助why采纳,获得10
4秒前
5秒前
5秒前
勤恳的糖豆完成签到,获得积分10
6秒前
6秒前
7秒前
zhaimen发布了新的文献求助10
8秒前
汉堡包应助研友_nqv2WZ采纳,获得10
9秒前
9秒前
红枫没有微雨怜完成签到 ,获得积分10
11秒前
十六发布了新的文献求助10
11秒前
chenjiaye完成签到 ,获得积分10
11秒前
果子完成签到 ,获得积分10
11秒前
酷炫的醉冬关注了科研通微信公众号
12秒前
漂亮的盼波完成签到 ,获得积分10
13秒前
13秒前
lll完成签到,获得积分10
16秒前
李迅迅发布了新的文献求助10
16秒前
轻松沛菡完成签到,获得积分10
16秒前
十六完成签到,获得积分20
16秒前
暂时想不到昵称完成签到,获得积分10
16秒前
lightgo应助喝一口麦茶采纳,获得10
17秒前
17秒前
17秒前
EED发布了新的文献求助10
18秒前
pp.gsyx发布了新的文献求助10
19秒前
SYLH应助广哥的爱徒采纳,获得10
20秒前
scienceL发布了新的文献求助10
21秒前
aldblm发布了新的文献求助10
22秒前
22秒前
科研通AI5应助Stting采纳,获得30
23秒前
23秒前
尼布丁应助美满沛芹采纳,获得200
24秒前
研友_LwlRen完成签到,获得积分10
25秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734375
求助须知:如何正确求助?哪些是违规求助? 3278405
关于积分的说明 10009129
捐赠科研通 2995011
什么是DOI,文献DOI怎么找? 1643128
邀请新用户注册赠送积分活动 780949
科研通“疑难数据库(出版商)”最低求助积分说明 749183