Nonlinear model predictive trajectory following control with feedback compensation for autonomous four-wheel independent drive electric vehicles

控制理论(社会学) 模型预测控制 卡西姆 偏航 弹道 补偿(心理学) 力矩(物理) 控制器(灌溉) MATLAB语言 主动安全 非线性系统 工程类 计算机科学 车辆动力学 方向盘 控制工程 控制(管理) 汽车工程 人工智能 农学 生物 精神分析 心理学 量子力学 经典力学 天文 物理 操作系统
作者
Xingyu Ye,Shaopeng Zhu,Di Ao,Wei Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:238 (2-3): 478-490 被引量:1
标识
DOI:10.1177/09544070221128856
摘要

Trajectory following is an important function of autonomous vehicles. To enable a four-wheel independent drive electric vehicle to precisely follow a predefined or real-time generated trajectory with good lateral stability and ride comfort at high velocity, a model predictive control (MPC) scheme with feedback compensation considering model mismatch is proposed in this paper to coordinate the direct yaw-moment control and active front steering. The system input signal computed by model predictive control is corrected by the feedback compensation to cope with the model mismatch existing between the controlled vehicle and the nominal model. Moreover, co-simulation is carried out between the software MATLAB/Simulink and Carsim to verify the proposed method. In comparison, the integration of the direct yaw-moment control and active front steering through model predictive control can overcome the non-smooth problem of vehicle dynamics while implementing the active front steering only. However, the value of the external yaw moment computed by the model predictive controller might be too large due to the predictive error in extreme situations, which could endanger the vehicle. The results reveal that the proposed model predictive control scheme with feedback compensation can effectively compensate the front steering angle and enhance the control effect. Therefore, it can significantly improve the trajectory following accuracy and yaw stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zouhui发布了新的文献求助10
刚刚
ppp发布了新的文献求助10
刚刚
似乎一场梦完成签到,获得积分10
1秒前
王亲近发布了新的文献求助10
3秒前
3秒前
成就的咖啡完成签到 ,获得积分10
3秒前
3秒前
chao完成签到,获得积分10
4秒前
华仔应助王肖宁采纳,获得10
5秒前
浮游应助汕头凯奇采纳,获得10
5秒前
机智的雁荷完成签到 ,获得积分10
5秒前
cooper发布了新的文献求助10
6秒前
John发布了新的文献求助10
6秒前
leiyang49完成签到,获得积分10
9秒前
今后应助Creshiki采纳,获得10
11秒前
叮叮叮发布了新的文献求助10
11秒前
11秒前
ls完成签到,获得积分10
11秒前
14秒前
充电宝应助科研小渣渣采纳,获得10
15秒前
Owen应助婷婷的大宝剑采纳,获得10
19秒前
shhoing应助乆乆乆乆采纳,获得10
19秒前
20秒前
直率的砖头完成签到,获得积分10
20秒前
阳光问安完成签到 ,获得积分10
22秒前
23秒前
23秒前
大模型应助茶米采纳,获得10
24秒前
24秒前
cooper完成签到,获得积分20
25秒前
26秒前
26秒前
28秒前
29秒前
29秒前
30秒前
zhangwj226完成签到,获得积分10
30秒前
31秒前
31秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003