Effect of heat input on bead geometry and mechanical properties in wire arc additive manufacturing of a nickel aluminum bronze alloy

青铜色 合金 材料科学 冶金 弧(几何) 有孔小珠 复合材料 机械工程 工程类
作者
Ahmed Aliyu,D.P. Bishop,Ali Nasiri
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:30: 8043-8053 被引量:6
标识
DOI:10.1016/j.jmrt.2024.05.203
摘要

Wire arc additive manufacturing (WAAM) stands as an efficient and cost-effective method for producing large-scale engineering components while minimizing waste. This study explores the influence of WAAM process parameters on nickel aluminum bronze (NAB) parts, focusing on the wire feed rate (WFR) as a key factor governing heat input and its effects on bead geometry, microstructure, and mechanical properties. The investigation involved depositing a single bead from NAB alloy while varying the WFS within the 2–7 m/min range, resulting in heat inputs ranging from 20.600 to 57.960 kJ/m. The results revealed that increasing heat input up to 34.944 kJ/m led to an augmentation in the bead dimensions and increased hardness due to κ-precipitates formation within the α-Cu matrix. However, with further increments in heat input to 49.088 kJ/m and 57.960 kJ/m, the bead dimensions and hardness exhibited a decline as the uniformity of intermetallic κ distribution lessened. Through optimization of WAAM process parameters, a defect-free single-wall NAB was successfully manufactured with enhanced properties. The tensile strength along the horizontal direction for the single-wall NAB alloy was found to be superior to that of the vertical direction, irrespective of the specimen's extraction regions. Additionally, the bottom specimen exhibited slightly higher tensile strength than the center and upper specimens due to being the initial layers of the wall deposited on the substrate plate, undergoing a faster cooling rate. These findings underscore the potential of WAAM as a robust method for the fabrication of larger NAB components with precision and efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑鲨完成签到 ,获得积分10
刚刚
刚刚
乐正飞风发布了新的文献求助10
刚刚
先林应助11di采纳,获得10
刚刚
secret完成签到,获得积分10
1秒前
sansan发布了新的文献求助10
2秒前
斯文莺发布了新的文献求助10
2秒前
Reid完成签到 ,获得积分10
2秒前
kmelo发布了新的文献求助10
3秒前
淡然夏天关注了科研通微信公众号
3秒前
科研小呆瓜完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
5秒前
科研通AI6应助迷人书蝶采纳,获得10
6秒前
李健应助阿雷采纳,获得10
6秒前
科研通AI6应助xixi采纳,获得10
7秒前
linlinyilulvdeng完成签到,获得积分10
7秒前
科研通AI2S应助尹辉采纳,获得10
7秒前
爱听歌老1完成签到,获得积分10
7秒前
8秒前
沈若南应助灯灯采纳,获得10
8秒前
9秒前
9秒前
9秒前
111发布了新的文献求助10
9秒前
9秒前
9秒前
谨慎的灵完成签到 ,获得积分20
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
勇敢牛牛发布了新的文献求助10
11秒前
11秒前
乐正飞风完成签到,获得积分20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565