Dynamic Adaptive Dynamic Window Approach

计算机科学 窗口(计算) 人工智能 控制工程 控制理论(社会学) 工程类 控制(管理) 操作系统
作者
Matej Dobrevski,Danijel Skočaj
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:40: 3068-3081
标识
DOI:10.1109/tro.2024.3400932
摘要

Robust local navigation is a critical capability for any mobile robot operating in a real-world, unstructured environment, especially when there are humans or other moving obstacles in the workspace. One of the most commonly used methods for local navigation is the Dynamic Window Approach (DWA), which does not address the problem of dynamic obstacles and depends heavily on the settings of the parameters in its cost function. Thus, it is a static approach that does not adapt to the characteristics of the environment, which can change significantly. On the other hand, data-driven deep learning approaches attempt to adapt to the characteristics of the environment by predicting the appropriate robot motion based on the current observation. However, they cannot guarantee collision-free trajectories for unseen inputs. In this work, we combine the best of both worlds. We propose a neural network to predict the weights of the DWA, which is then used for safe local navigation. To address the problem of dynamic obstacles the proposed method considers a short sequence of observations to allow the network to model the motion of the obstacles and adjust the DWA weights accordingly. The network is trained using the Proximal Policy Optimization (PPO) in a reinforcement learning setting in a simulated dynamic environment. We perform a comprehensive evaluation of the proposed approach in realistic scenarios using range scans of real 3D spaces and show that it outperforms both DWA and purely Deep Learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MMMMM发布了新的文献求助150
1秒前
NexusExplorer应助jssssssss采纳,获得10
1秒前
学术小猫完成签到,获得积分20
2秒前
微笑亿先发布了新的文献求助10
3秒前
nozomi发布了新的文献求助10
3秒前
努力的科研小白完成签到 ,获得积分10
5秒前
6秒前
willing发布了新的文献求助100
6秒前
深情安青应助1111采纳,获得10
6秒前
英姑应助Eillen采纳,获得10
7秒前
萧水白应助liuxialiumin采纳,获得10
7秒前
7秒前
默默的白梅完成签到,获得积分10
9秒前
科研通AI2S应助Sparkle采纳,获得10
9秒前
sissiarno应助Sparkle采纳,获得30
9秒前
9秒前
个性向珊关注了科研通微信公众号
9秒前
11秒前
大师应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得20
11秒前
田様应助科研通管家采纳,获得30
11秒前
小木木壮应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
大师应助科研通管家采纳,获得10
11秒前
11秒前
彳亍1117应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得30
12秒前
彳亍1117应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得10
12秒前
12秒前
暗夜星辰发布了新的文献求助10
13秒前
hezt发布了新的文献求助10
13秒前
酷炫的毛巾应助MMMMM采纳,获得10
14秒前
15秒前
科研通AI2S应助鲤鱼绿旋采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542