Dynamic Adaptive Dynamic Window Approach

计算机科学 窗口(计算) 人工智能 控制工程 控制理论(社会学) 工程类 操作系统 控制(管理)
作者
Matej Dobrevski,Danijel Skočaj
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:40: 3068-3081 被引量:14
标识
DOI:10.1109/tro.2024.3400932
摘要

Robust local navigation is a critical capability for any mobile robot operating in a real-world, unstructured environment, especially when there are humans or other moving obstacles in the workspace. One of the most commonly used methods for local navigation is the Dynamic Window Approach (DWA), which does not address the problem of dynamic obstacles and depends heavily on the settings of the parameters in its cost function. Thus, it is a static approach that does not adapt to the characteristics of the environment, which can change significantly. On the other hand, data-driven deep learning approaches attempt to adapt to the characteristics of the environment by predicting the appropriate robot motion based on the current observation. However, they cannot guarantee collision-free trajectories for unseen inputs. In this work, we combine the best of both worlds. We propose a neural network to predict the weights of the DWA, which is then used for safe local navigation. To address the problem of dynamic obstacles the proposed method considers a short sequence of observations to allow the network to model the motion of the obstacles and adjust the DWA weights accordingly. The network is trained using the Proximal Policy Optimization (PPO) in a reinforcement learning setting in a simulated dynamic environment. We perform a comprehensive evaluation of the proposed approach in realistic scenarios using range scans of real 3D spaces and show that it outperforms both DWA and purely Deep Learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吹风机完成签到,获得积分10
刚刚
乐乐应助阿治采纳,获得10
刚刚
刚刚
111111完成签到,获得积分10
1秒前
健忘的小懒虫完成签到,获得积分10
1秒前
2秒前
愿你安好不离笑完成签到,获得积分10
2秒前
蔺景轩完成签到 ,获得积分10
2秒前
张益达完成签到,获得积分10
3秒前
Cheny完成签到 ,获得积分10
3秒前
3秒前
4秒前
华仔应助淡定访枫采纳,获得10
4秒前
康丽发布了新的文献求助10
5秒前
Aster发布了新的文献求助10
5秒前
Yuanchaoyi完成签到,获得积分20
5秒前
Viki完成签到,获得积分10
5秒前
毛毛完成签到,获得积分20
6秒前
踏实语海完成签到,获得积分10
6秒前
戊烷完成签到,获得积分10
6秒前
阔达的海完成签到,获得积分10
6秒前
7秒前
番茄炒西红柿完成签到,获得积分10
7秒前
冷静灵竹完成签到,获得积分10
7秒前
余喆完成签到,获得积分10
8秒前
Yuanchaoyi发布了新的文献求助10
8秒前
李天乐发布了新的文献求助10
8秒前
金元宝完成签到,获得积分10
8秒前
充电宝应助伶俐问薇采纳,获得10
8秒前
希望天下0贩的0应助大白采纳,获得10
9秒前
情怀应助怕黑的凝旋采纳,获得10
9秒前
mrlow完成签到,获得积分10
9秒前
gelinhao完成签到,获得积分10
10秒前
GEN完成签到,获得积分20
11秒前
11秒前
iiing完成签到,获得积分10
11秒前
11秒前
重要的板凳完成签到,获得积分10
11秒前
Venus完成签到,获得积分10
11秒前
田様应助吹风机采纳,获得10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167