Dynamic Adaptive Dynamic Window Approach

计算机科学 窗口(计算) 人工智能 控制工程 控制理论(社会学) 工程类 控制(管理) 操作系统
作者
Matej Dobrevski,Danijel Skočaj
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:40: 3068-3081
标识
DOI:10.1109/tro.2024.3400932
摘要

Robust local navigation is a critical capability for any mobile robot operating in a real-world, unstructured environment, especially when there are humans or other moving obstacles in the workspace. One of the most commonly used methods for local navigation is the Dynamic Window Approach (DWA), which does not address the problem of dynamic obstacles and depends heavily on the settings of the parameters in its cost function. Thus, it is a static approach that does not adapt to the characteristics of the environment, which can change significantly. On the other hand, data-driven deep learning approaches attempt to adapt to the characteristics of the environment by predicting the appropriate robot motion based on the current observation. However, they cannot guarantee collision-free trajectories for unseen inputs. In this work, we combine the best of both worlds. We propose a neural network to predict the weights of the DWA, which is then used for safe local navigation. To address the problem of dynamic obstacles the proposed method considers a short sequence of observations to allow the network to model the motion of the obstacles and adjust the DWA weights accordingly. The network is trained using the Proximal Policy Optimization (PPO) in a reinforcement learning setting in a simulated dynamic environment. We perform a comprehensive evaluation of the proposed approach in realistic scenarios using range scans of real 3D spaces and show that it outperforms both DWA and purely Deep Learning approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赤练仙子完成签到,获得积分10
1秒前
MnO2fff应助zsyzxb采纳,获得20
4秒前
kingwill应助zsyzxb采纳,获得20
4秒前
顺利鱼完成签到,获得积分10
5秒前
7秒前
8秒前
Xx.完成签到,获得积分10
9秒前
星辰大海应助内向凌兰采纳,获得10
9秒前
9秒前
wuzhizhiya完成签到,获得积分10
10秒前
11秒前
rudjs发布了新的文献求助10
11秒前
14秒前
Ava应助何糖采纳,获得10
14秒前
桐桐应助美丽的芷烟采纳,获得10
14秒前
野子完成签到,获得积分10
15秒前
情怀应助小D采纳,获得30
16秒前
yuan发布了新的文献求助10
16秒前
berry发布了新的文献求助10
17秒前
17秒前
淡淡采白发布了新的文献求助10
18秒前
思源应助勤恳慕蕊采纳,获得10
18秒前
知犯何逆完成签到 ,获得积分10
19秒前
啊哈完成签到,获得积分10
19秒前
20秒前
20秒前
Draven完成签到 ,获得积分10
20秒前
tmpstlml发布了新的文献求助10
21秒前
张红梨完成签到,获得积分10
21秒前
迷迷完成签到,获得积分20
22秒前
22秒前
科研通AI2S应助chen采纳,获得10
23秒前
穿山甲坐飞机完成签到 ,获得积分10
23秒前
24秒前
美丽的芷烟给美丽的芷烟的求助进行了留言
24秒前
科研通AI5应助经年采纳,获得10
24秒前
24秒前
勤劳晓亦应助木头人采纳,获得10
25秒前
科研通AI5应助想瘦的海豹采纳,获得10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808