亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Metformin prevents mandibular bone loss in a mouse model of accelerated aging by correcting dysregulated AMPK-mTOR signaling and osteoclast differentiation

破骨细胞 安普克 PI3K/AKT/mTOR通路 二甲双胍 细胞生物学 医学 信号转导 癌症研究 内分泌学 磷酸化 内科学 蛋白激酶A 生物 糖尿病 受体
作者
Boyang Liu,Jiao Zhang,Jin-Ge Zhang,Xiaolei Ji,Rong Wang,Aixiu Gong,Dengshun Miao
出处
期刊:Journal of orthopaedic translation [Elsevier]
卷期号:46: 129-142 被引量:2
标识
DOI:10.1016/j.jot.2024.03.001
摘要

Age-related mandibular osteoporosis frequently causes loose teeth, difficulty eating, and disfiguration in elders. Bmi1−/− mice displaying accelerated skeletal aging represent a useful model for testing interventions against premature jaw bone loss. As an anti-aging agent, metformin may ameliorate molecular dysfunction driving osteoporosis pathogenesis. We explored the mechanisms of mandibular osteopenia in Bmi1−/− mice and prevention by metformin treatment. Three mouse groups were utilized: wild-type controls, untreated Bmi1−/−, and Bmi1−/− receiving 1 g/kg metformin diet. Mandibular bone phenotype was assessed by X-ray, micro-CT, histology, and immunohistochemistry. AMPK-mTOR pathway analysis, senescence markers, osteoblast and osteoclast gene expression were evaluated in jaw tissue. Osteoclast differentiation capacity and associated signaling molecules were examined in cultured Bmi1−/− bone marrow mononuclear cells ± metformin. Bmi1 loss reduced mandible bone density concomitant with decreased AMPK activity, increased mTOR signaling and cellular senescence in jaw tissue versus wild-type controls. This was accompanied by impaired osteoblast function and upregulated osteoclastogenesis markers. Metformin administration normalized AMPK-mTOR balance, oxidative stress and senescence signaling to significantly improve mandibular bone architecture in Bmi1−/− mice. In culture, metformin attenuated excessive osteoclast differentiation from Bmi1−/− marrow precursors by correcting dysregulated AMPK-mTOR-p53 pathway activity and suppressing novel pro-osteoclastogenic factor Stfa1. Our study newly demonstrates metformin prevents accelerated jaw bone loss in a premature aging murine model by rectifying molecular dysfunction in cellular energy sensors, redox state, senescence and osteoclastogenesis pathways. Targeting such age-associated mechanisms contributing to osteoporosis pathogenesis may help maintain oral health and aesthetics in the growing elderly population. The pronounced mandibular osteopenia exhibited in Bmi1−/− mice represents an accelerated model of jaw bone deterioration observed during human aging. Our finding that metformin preserves mandibular bone integrity in this progeroid model has important clinical implications. As an inexpensive oral medication already widely used to manage diabetes, metformin holds translational promise for mitigating age-related osteoporosis. The mandible is essential for chewing, swallowing, speech and facial structure, but progressively loses bone mass and strength with advancing age, significantly impacting seniors' nutrition, physical function and self-image. Our results suggest metformin's ability to rectify cellular energy imbalance, oxidative stress and osteoclast overactivity may help maintain jaw bone health into old age. Further research is still needed given metformin's multifaceted biology and bone regulation by diverse pathways. However, this preclinical study provides a strong rationale for clinical trials specifically examining mandibular outcomes in elderly subjects receiving standard metformin treatment for diabetes or prediabetes. Determining if metformin supplementation can prevent or delay oral disability and disfigurement from senescent jaw bone loss in the growing aged population represents an important public health priority. In summary, our mechanistic findings in a genetic mouse model indicate metformin merits investigation in rigorous human studies for alleviating morbidity associated with age-related mandibular osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1437594843完成签到 ,获得积分10
3秒前
30秒前
熊孩子发布了新的文献求助40
55秒前
57秒前
爱静静应助科研通管家采纳,获得10
59秒前
爱静静应助科研通管家采纳,获得30
59秒前
thangxtz完成签到,获得积分10
1分钟前
hucheng发布了新的文献求助30
1分钟前
lili完成签到 ,获得积分10
1分钟前
熊孩子完成签到,获得积分10
1分钟前
桐桐应助育种小杰采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
冬去春来完成签到 ,获得积分10
3分钟前
shadow发布了新的文献求助30
3分钟前
luckyalias完成签到 ,获得积分10
3分钟前
一杯美式完成签到,获得积分20
3分钟前
hucheng发布了新的文献求助10
3分钟前
3分钟前
杳鸢应助个性的以菱采纳,获得50
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
华仔应助hucheng采纳,获得10
5分钟前
5分钟前
育种小杰发布了新的文献求助10
5分钟前
育种小杰完成签到,获得积分10
5分钟前
AireenBeryl531完成签到,获得积分0
5分钟前
爱静静完成签到,获得积分0
6分钟前
6分钟前
xiaoQ完成签到,获得积分10
6分钟前
shadow发布了新的文献求助10
6分钟前
xiaoQ发布了新的文献求助20
6分钟前
shadow完成签到,获得积分10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
7分钟前
gszy1975完成签到,获得积分10
7分钟前
hucheng发布了新的文献求助10
7分钟前
天才小熊猫完成签到,获得积分10
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865814
捐赠科研通 2463938
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629688
版权声明 601853