Non-Covalent and Covalent-Synergistical-Interaction Assembled GO Self-Supporting Membrane with Excellent Alignment for Ultrahigh H2 Barrier Applications

共价键 纳米技术 化学 材料科学 生物化学 有机化学
作者
Cong Liu,Hefeng Li,Jiabao Zhu,Xianhua Huan,Ke Xing,Hongbo Geng,Xiaodong Guo,Lei Ge,Xiaolong Jia,Xiaoping Yang,Hao Wang
出处
期刊:Composites Part B-engineering [Elsevier BV]
卷期号:283: 111652-111652
标识
DOI:10.1016/j.compositesb.2024.111652
摘要

The emerging graphene oxide membranes (GOm) showcase superiority in molecule barrier applications, yet their hydrogen (H2) barrier is still less than ideal due to the insufficient control of GOm assembly architecture. Here, molecular patch engineering, in which amino rich polyethyleneimine (PEI) is controllably introduced into GO system, is proposed to construct a highly aligned self-supporting PGO membrane (PGOm) for exceptional H2 barrier performance. Based on the non-covalent and covalent interactions between GO nanosheets and PEI, the assembly behavior of GO nanosheets from the liquid phase to the solid phase is efficiently optimized in both extension and alignment synergistically, resulting in the superior alignments of PGOm with a Herman's orientation factor as high as 0.86. Owing to the excellent alignments, the hydrogen permeability (PH2) of PGOm is substantially reduced to a mere 2.28 cm3·cm/(cm2·s·Pa)·10-15 even at a high temperature of 80 °C, representing a remarkable three-order-of-magnitude decrease compared to GOm. Additionally, at 25°C, the PH2 of PGOm-enhanced epoxy sandwich composites is minimized to a value of 1.2 cm3·cm/(cm2·s·Pa)·10-15, approximately 50 times lower than that of pure EP. This highlights the significant potential of PGOm in enhancing the gas tightness of composite pressure vessels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000完成签到,获得积分10
5秒前
6秒前
6秒前
zzl1111完成签到,获得积分10
6秒前
NexusExplorer应助Skyler666采纳,获得10
6秒前
lingck发布了新的文献求助10
6秒前
隐形曼青应助carly采纳,获得20
10秒前
000发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
佳语妍说完成签到,获得积分10
12秒前
情怀应助洁净的静芙采纳,获得10
14秒前
15秒前
超级的鹅发布了新的文献求助80
15秒前
务实源智发布了新的文献求助30
15秒前
15秒前
zzz完成签到,获得积分20
16秒前
17秒前
18秒前
SHJ发布了新的文献求助10
20秒前
Atom完成签到,获得积分10
20秒前
深情安青应助zzz采纳,获得10
21秒前
21秒前
杜熙凤发布了新的文献求助10
23秒前
SunHY发布了新的文献求助10
23秒前
SHJ完成签到,获得积分20
28秒前
SunHY完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助150
29秒前
29秒前
32秒前
樊书雪完成签到,获得积分10
32秒前
insist完成签到 ,获得积分10
33秒前
我呜呜呜呜完成签到,获得积分10
33秒前
TheBugsss完成签到,获得积分10
33秒前
盼盼完成签到,获得积分10
35秒前
35秒前
Orange应助罗中翠采纳,获得10
35秒前
脑洞疼应助坚定岂愈采纳,获得10
35秒前
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167