Non-Covalent and Covalent-Synergistical-Interaction Assembled GO Self-Supporting Membrane with Excellent Alignment for Ultrahigh H2 Barrier Applications

共价键 纳米技术 化学 材料科学 生物化学 有机化学
作者
Cong Liu,Hefeng Li,Jiabao Zhu,Xianhua Huan,Ke Xing,Hongbo Geng,Xiaodong Guo,Lei Ge,Xiaolong Jia,Xiaoping Yang,Hao Wang
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:283: 111652-111652
标识
DOI:10.1016/j.compositesb.2024.111652
摘要

The emerging graphene oxide membranes (GOm) showcase superiority in molecule barrier applications, yet their hydrogen (H2) barrier is still less than ideal due to the insufficient control of GOm assembly architecture. Here, molecular patch engineering, in which amino rich polyethyleneimine (PEI) is controllably introduced into GO system, is proposed to construct a highly aligned self-supporting PGO membrane (PGOm) for exceptional H2 barrier performance. Based on the non-covalent and covalent interactions between GO nanosheets and PEI, the assembly behavior of GO nanosheets from the liquid phase to the solid phase is efficiently optimized in both extension and alignment synergistically, resulting in the superior alignments of PGOm with a Herman's orientation factor as high as 0.86. Owing to the excellent alignments, the hydrogen permeability (PH2) of PGOm is substantially reduced to a mere 2.28 cm3·cm/(cm2·s·Pa)·10-15 even at a high temperature of 80 °C, representing a remarkable three-order-of-magnitude decrease compared to GOm. Additionally, at 25°C, the PH2 of PGOm-enhanced epoxy sandwich composites is minimized to a value of 1.2 cm3·cm/(cm2·s·Pa)·10-15, approximately 50 times lower than that of pure EP. This highlights the significant potential of PGOm in enhancing the gas tightness of composite pressure vessels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
VISIN发布了新的文献求助10
刚刚
doudou发布了新的文献求助10
刚刚
喜羊羊发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
LLL完成签到,获得积分10
2秒前
chr完成签到,获得积分10
2秒前
斯文败类应助sadd采纳,获得10
2秒前
赵慧完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
nico发布了新的文献求助10
2秒前
懒羊羊关注了科研通微信公众号
3秒前
牛马人发布了新的文献求助10
4秒前
4秒前
Sherlock完成签到,获得积分10
4秒前
酷波er应助徐爱琳采纳,获得10
4秒前
4秒前
小北发布了新的文献求助10
5秒前
嘉嘉完成签到,获得积分10
5秒前
PANXX完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
羊羊发布了新的文献求助10
5秒前
大气月饼发布了新的文献求助10
6秒前
流星砸地鼠完成签到 ,获得积分10
7秒前
7秒前
茹茹发布了新的文献求助10
7秒前
Bear发布了新的文献求助10
8秒前
赵慧发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
小蘑菇应助Sandy采纳,获得10
9秒前
9秒前
10秒前
liao应助VDC采纳,获得10
10秒前
VISIN完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210