Robust deep learning method for fruit decay detection and plant identification: enhancing food security and quality control

鉴定(生物学) 质量(理念) 粮食安全 控制(管理) 食品质量 生物 计算机科学 生物技术 环境科学 生物系统 人工智能 食品科学 植物 农业 物理 生态学 量子力学
作者
Pariya Afsharpour,Toktam Zoughi,Mahmood Deypir,Mohamad Javad Zoqi
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:15 被引量:1
标识
DOI:10.3389/fpls.2024.1366395
摘要

This paper presents a robust deep learning method for fruit decay detection and plant identification. By addressing the limitations of previous studies that primarily focused on model accuracy, our approach aims to provide a more comprehensive solution that considers the challenges of robustness and limited data scenarios. The proposed method achieves exceptional accuracy of 99.93%, surpassing established models. In addition to its exceptional accuracy, the proposed method highlights the significance of robustness and adaptability in limited data scenarios. The proposed model exhibits strong performance even under the challenging conditions, such as intense lighting variations and partial image obstructions. Extensive evaluations demonstrate its robust performance, generalization ability, and minimal misclassifications. The inclusion of Class Activation Maps enhances the model's capability to identify distinguishing features between fresh and rotten fruits. This research has significant implications for fruit quality control, economic loss reduction, and applications in agriculture, transportation, and scientific research. The proposed method serves as a valuable resource for fruit and plant-related industries. It offers precise adaptation to specific data, customization of the network architecture, and effective training even with limited data. Overall, this research contributes to fruit quality control, economic loss reduction, and waste minimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芙芙官应助别急我先送采纳,获得30
1秒前
科研通AI5应助洁净灭男采纳,获得10
1秒前
1秒前
万能图书馆应助新生木木采纳,获得10
3秒前
Lucas应助Gary采纳,获得10
3秒前
mengyijie2完成签到,获得积分10
3秒前
浅斟低唱发布了新的文献求助10
4秒前
赘婿应助重要问芙brk采纳,获得10
5秒前
6秒前
所所应助稀饭采纳,获得10
6秒前
9秒前
10秒前
靖123456发布了新的文献求助10
12秒前
13秒前
田様应助凡仔采纳,获得10
14秒前
Hezam发布了新的文献求助10
16秒前
17秒前
Neon发布了新的文献求助10
18秒前
缥缈一刀完成签到,获得积分10
18秒前
打打应助容荣采纳,获得10
20秒前
Hezam完成签到,获得积分20
20秒前
隐形曼青应助容荣采纳,获得10
20秒前
22秒前
响铃发布了新的文献求助10
23秒前
CipherSage应助浅斟低唱采纳,获得10
23秒前
若邻完成签到,获得积分10
25秒前
大模型应助jj采纳,获得10
26秒前
Lin完成签到,获得积分20
27秒前
犹豫梨愁发布了新的文献求助10
28秒前
xs发布了新的文献求助30
28秒前
28秒前
28秒前
29秒前
einuo发布了新的文献求助10
30秒前
31秒前
晓彤发布了新的文献求助10
31秒前
舍曲林完成签到,获得积分10
31秒前
32秒前
33秒前
kilig应助笨笨鲜花采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524932
求助须知:如何正确求助?哪些是违规求助? 3105740
关于积分的说明 9276012
捐赠科研通 2803027
什么是DOI,文献DOI怎么找? 1538292
邀请新用户注册赠送积分活动 716162
科研通“疑难数据库(出版商)”最低求助积分说明 709278