Use of natural language processing techniques to predict patient selection for total hip and knee arthroplasty from radiology reports

医学 接收机工作特性 置信区间 关节置换术 人工智能 推论 机器学习 协议(科学) 放射科 医学物理学 自然语言处理 计算机科学 内科学 病理 替代医学
作者
Luke Farrow,Mingjun Zhong,Lesley A. Anderson
出处
期刊:The bone & joint journal [British Editorial Society of Bone and Joint Surgery]
卷期号:106-B (7): 688-695
标识
DOI:10.1302/0301-620x.106b7.bjj-2024-0136
摘要

Aims To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports. Methods Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data environment designed for artificial intelligence (AI) inference. Only preoperative radiology reports were included. NLP algorithms were based on the freely available GatorTron model, a LLM trained on over 82 billion words of de-identified clinical text. Two inference tasks were performed: assessment after model-fine tuning (50 Epochs and three cycles of k-fold cross validation), and external validation. Results For THA, there were 5,558 patient radiology reports included, of which 4,137 were used for model training and testing, and 1,421 for external validation. Following training, model performance demonstrated average (mean across three folds) accuracy, F1 score, and area under the receiver operating curve (AUROC) values of 0.850 (95% confidence interval (CI) 0.833 to 0.867), 0.813 (95% CI 0.785 to 0.841), and 0.847 (95% CI 0.822 to 0.872), respectively. For TKA, 7,457 patient radiology reports were included, with 3,478 used for model training and testing, and 3,152 for external validation. Performance metrics included accuracy, F1 score, and AUROC values of 0.757 (95% CI 0.702 to 0.811), 0.543 (95% CI 0.479 to 0.607), and 0.717 (95% CI 0.657 to 0.778) respectively. There was a notable deterioration in performance on external validation in both cohorts. Conclusion The use of routinely available preoperative radiology reports provides promising potential to help screen suitable candidates for THA, but not for TKA. The external validation results demonstrate the importance of further model testing and training when confronted with new clinical cohorts. Cite this article: Bone Joint J 2024;106-B(7):688–695.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ycccc99发布了新的文献求助10
刚刚
香蕉觅云应助专注的大山采纳,获得10
刚刚
caibi发布了新的文献求助10
刚刚
嘻嘻发布了新的文献求助10
1秒前
不配.应助车幻梦采纳,获得20
1秒前
爆米花应助hashtag采纳,获得20
1秒前
ZHAZHA发布了新的文献求助10
1秒前
美嘉美发布了新的文献求助80
1秒前
2秒前
liuyixing发布了新的文献求助10
2秒前
3秒前
fangfang完成签到,获得积分10
3秒前
乌云乌云快走开完成签到,获得积分10
3秒前
酷波er应助123采纳,获得10
3秒前
明理千雁发布了新的文献求助10
3秒前
领导范儿应助雨后采纳,获得10
4秒前
科目三应助single采纳,获得10
4秒前
4秒前
5秒前
熊仔仔熊完成签到 ,获得积分10
5秒前
5秒前
共享精神应助小飞侠采纳,获得10
5秒前
脑洞疼应助外向一一采纳,获得10
5秒前
大个应助繁荣的代秋采纳,获得10
5秒前
yiyi发布了新的文献求助10
6秒前
LabRat完成签到 ,获得积分10
6秒前
kitsch应助呦呦又鹿采纳,获得10
6秒前
6秒前
6秒前
6秒前
pipi完成签到,获得积分20
6秒前
橙子发布了新的文献求助10
7秒前
安详寒凝发布了新的文献求助10
7秒前
LIUJIE完成签到,获得积分10
7秒前
蓝桉发布了新的文献求助10
7秒前
懵懂的绿真完成签到,获得积分10
7秒前
7秒前
JamesPei应助嘻嘻采纳,获得10
8秒前
潮汐完成签到,获得积分10
8秒前
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153113
求助须知:如何正确求助?哪些是违规求助? 2804274
关于积分的说明 7858206
捐赠科研通 2462058
什么是DOI,文献DOI怎么找? 1310639
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794