A comparative analysis of deep learning and hybrid iterative reconstruction algorithms with contrast-enhancement-boost post-processing on the image quality of indirect computed tomography venography of the lower extremities

医学 算法 图像质量 放射科 迭代重建 数学 人工智能 核医学 计算机科学 图像(数学)
作者
Huayang Du,Xin Sui,Ruijie Zhao,Jiaru Wang,Ming Ying,Sirong Piao,Jinhua Wang,Zhuangfei Ma,Yun Wang,Lan Song,Wei Song
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01342-0
摘要

Abstract Purpose To examine whether there is a significant difference in image quality between the deep learning reconstruction (DLR [AiCE, Advanced Intelligent Clear-IQ Engine]) and hybrid iterative reconstruction (HIR [AIDR 3D, adaptive iterative dose reduction three dimensional]) algorithms on the conventional enhanced and CE-boost (contrast-enhancement-boost) images of indirect computed tomography venography (CTV) of lower extremities. Materials and methods In this retrospective study, seventy patients who underwent CTV from June 2021 to October 2022 to assess deep vein thrombosis and varicose veins were included. Unenhanced and enhanced images were reconstructed for AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images were obtained using subtraction software. Objective and subjective image qualities were assessed, and radiation doses were recorded. Results The CT values of the inferior vena cava (IVC), femoral vein ( FV), and popliteal vein (PV) in the CE-boost images were approximately 1.3 (1.31–1.36) times higher than in those of the enhanced images. There were no significant differences in mean CT values of IVC, FV, and PV between AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images. Noise in AiCE, AiCE-boost images was significantly lower than in AIDR 3D and AIDR 3D-boost images ( P < 0.05). The SNR (signal-to-noise ratio), CNR (contrast-to-noise ratio), and subjective scores of AiCE-boost images were the highest among 4 groups, surpassing AiCE, AIDR 3D, and AIDR 3D-boost images (all P < 0.05). Conclusion In indirect CTV of the lower extremities images, DLR with the CE-boost technique could decrease the image noise and improve the CT values, SNR, CNR, and subjective image scores. AiCE-boost images received the highest subjective image quality score and were more readily accepted by radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助馨妈采纳,获得10
1秒前
JamesPei应助馨妈采纳,获得10
1秒前
2秒前
bkagyin应助L罗1采纳,获得10
2秒前
可爱的函函应助JL采纳,获得10
2秒前
呀呀呀完成签到,获得积分10
2秒前
充电宝应助焱冰采纳,获得10
2秒前
科研通AI6应助瘦瘦的南蕾采纳,获得10
2秒前
小青椒应助风清扬采纳,获得30
3秒前
3秒前
天天完成签到,获得积分10
4秒前
23XZYZN发布了新的文献求助30
4秒前
梅子完成签到 ,获得积分10
5秒前
上官若男应助张磊采纳,获得10
5秒前
清和漾完成签到,获得积分10
5秒前
Di发布了新的文献求助10
5秒前
wwe完成签到,获得积分10
5秒前
丘比特应助顾宇采纳,获得10
5秒前
5秒前
Yi完成签到,获得积分10
5秒前
6秒前
6秒前
Kurans关注了科研通微信公众号
7秒前
Certainty橙子完成签到 ,获得积分10
7秒前
minsu发布了新的文献求助10
7秒前
7秒前
脑洞疼应助嗨喔采纳,获得10
8秒前
浅弋完成签到,获得积分10
8秒前
8秒前
ggdio完成签到,获得积分10
8秒前
现代白玉完成签到,获得积分10
8秒前
lin完成签到,获得积分10
9秒前
zhengzengpeng发布了新的文献求助10
9秒前
9秒前
哈哈哈哈完成签到 ,获得积分10
10秒前
10秒前
wild_cube发布了新的文献求助10
10秒前
xiaohan发布了新的文献求助10
11秒前
Nora发布了新的文献求助10
11秒前
现代白玉发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177