A comparative analysis of deep learning and hybrid iterative reconstruction algorithms with contrast-enhancement-boost post-processing on the image quality of indirect computed tomography venography of the lower extremities

医学 算法 图像质量 放射科 迭代重建 数学 人工智能 核医学 计算机科学 图像(数学)
作者
Huayang Du,Xin Sui,Ruijie Zhao,Jiaru Wang,Ming Ying,Sirong Piao,Jinhua Wang,Zhuangfei Ma,Yun Wang,Lan Song,Wei Song
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01342-0
摘要

Abstract Purpose To examine whether there is a significant difference in image quality between the deep learning reconstruction (DLR [AiCE, Advanced Intelligent Clear-IQ Engine]) and hybrid iterative reconstruction (HIR [AIDR 3D, adaptive iterative dose reduction three dimensional]) algorithms on the conventional enhanced and CE-boost (contrast-enhancement-boost) images of indirect computed tomography venography (CTV) of lower extremities. Materials and methods In this retrospective study, seventy patients who underwent CTV from June 2021 to October 2022 to assess deep vein thrombosis and varicose veins were included. Unenhanced and enhanced images were reconstructed for AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images were obtained using subtraction software. Objective and subjective image qualities were assessed, and radiation doses were recorded. Results The CT values of the inferior vena cava (IVC), femoral vein ( FV), and popliteal vein (PV) in the CE-boost images were approximately 1.3 (1.31–1.36) times higher than in those of the enhanced images. There were no significant differences in mean CT values of IVC, FV, and PV between AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images. Noise in AiCE, AiCE-boost images was significantly lower than in AIDR 3D and AIDR 3D-boost images ( P < 0.05). The SNR (signal-to-noise ratio), CNR (contrast-to-noise ratio), and subjective scores of AiCE-boost images were the highest among 4 groups, surpassing AiCE, AIDR 3D, and AIDR 3D-boost images (all P < 0.05). Conclusion In indirect CTV of the lower extremities images, DLR with the CE-boost technique could decrease the image noise and improve the CT values, SNR, CNR, and subjective image scores. AiCE-boost images received the highest subjective image quality score and were more readily accepted by radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
村医完成签到,获得积分10
刚刚
李健应助呵呵心情采纳,获得10
刚刚
wujiao发布了新的文献求助10
3秒前
研友_n0QYAZ发布了新的文献求助10
4秒前
wiese完成签到,获得积分20
6秒前
koi完成签到,获得积分10
6秒前
7秒前
贝壳完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
张亚雪完成签到,获得积分10
12秒前
koi发布了新的文献求助10
13秒前
研友_n0QYAZ完成签到,获得积分10
14秒前
biocreater完成签到,获得积分10
14秒前
17秒前
开心市民发布了新的文献求助30
18秒前
18秒前
tangt糖糖完成签到,获得积分10
19秒前
疾风知劲草完成签到,获得积分10
21秒前
Akim应助时迁采纳,获得10
21秒前
可乐发布了新的文献求助10
21秒前
21秒前
22秒前
滴答滴完成签到,获得积分10
23秒前
呵呵心情发布了新的文献求助10
23秒前
Frank发布了新的文献求助10
23秒前
FashionBoy应助哈呼呼采纳,获得10
24秒前
大个应助阿辽采纳,获得10
24秒前
滴答滴发布了新的文献求助10
26秒前
only发布了新的文献求助10
27秒前
科研通AI2S应助yx_cheng采纳,获得10
27秒前
28秒前
由哎完成签到,获得积分10
29秒前
29秒前
十七发布了新的文献求助10
30秒前
30秒前
一路高飛完成签到,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323