A comparative analysis of deep learning and hybrid iterative reconstruction algorithms with contrast-enhancement-boost post-processing on the image quality of indirect computed tomography venography of the lower extremities

医学 算法 图像质量 放射科 迭代重建 数学 人工智能 核医学 计算机科学 图像(数学)
作者
Huayang Du,Xin Sui,Ruijie Zhao,Jiaru Wang,Ming Ying,Sirong Piao,Jinhua Wang,Zhuangfei Ma,Yun Wang,Lan Song,Wei Song
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01342-0
摘要

Abstract Purpose To examine whether there is a significant difference in image quality between the deep learning reconstruction (DLR [AiCE, Advanced Intelligent Clear-IQ Engine]) and hybrid iterative reconstruction (HIR [AIDR 3D, adaptive iterative dose reduction three dimensional]) algorithms on the conventional enhanced and CE-boost (contrast-enhancement-boost) images of indirect computed tomography venography (CTV) of lower extremities. Materials and methods In this retrospective study, seventy patients who underwent CTV from June 2021 to October 2022 to assess deep vein thrombosis and varicose veins were included. Unenhanced and enhanced images were reconstructed for AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images were obtained using subtraction software. Objective and subjective image qualities were assessed, and radiation doses were recorded. Results The CT values of the inferior vena cava (IVC), femoral vein ( FV), and popliteal vein (PV) in the CE-boost images were approximately 1.3 (1.31–1.36) times higher than in those of the enhanced images. There were no significant differences in mean CT values of IVC, FV, and PV between AIDR 3D and AiCE, AIDR 3D-boost and AiCE-boost images. Noise in AiCE, AiCE-boost images was significantly lower than in AIDR 3D and AIDR 3D-boost images ( P < 0.05). The SNR (signal-to-noise ratio), CNR (contrast-to-noise ratio), and subjective scores of AiCE-boost images were the highest among 4 groups, surpassing AiCE, AIDR 3D, and AIDR 3D-boost images (all P < 0.05). Conclusion In indirect CTV of the lower extremities images, DLR with the CE-boost technique could decrease the image noise and improve the CT values, SNR, CNR, and subjective image scores. AiCE-boost images received the highest subjective image quality score and were more readily accepted by radiologists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的竹员外完成签到,获得积分10
1秒前
PEGA完成签到,获得积分10
2秒前
3秒前
3秒前
山河完成签到 ,获得积分10
4秒前
4秒前
4秒前
CNAxiaozhu7完成签到,获得积分0
4秒前
Brian完成签到,获得积分20
5秒前
fubi完成签到,获得积分20
5秒前
无心的星月完成签到 ,获得积分10
5秒前
盼盼发布了新的文献求助10
5秒前
xianyu完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
搞怪新晴完成签到 ,获得积分20
6秒前
李爱国应助pyx采纳,获得10
6秒前
科研通AI6.1应助jias采纳,获得10
6秒前
是达达哦发布了新的文献求助10
7秒前
森淼完成签到,获得积分10
8秒前
电池博士发布了新的文献求助10
8秒前
Owen应助Fiee采纳,获得10
8秒前
fubi发布了新的文献求助10
8秒前
gengxw完成签到,获得积分10
8秒前
9秒前
微笑老太完成签到,获得积分10
9秒前
qq完成签到,获得积分20
10秒前
我要做实验完成签到 ,获得积分10
10秒前
佛光辉发布了新的文献求助10
11秒前
乐乐应助漂亮的笑柳采纳,获得10
11秒前
123发布了新的文献求助10
11秒前
sunzhuxi完成签到,获得积分10
11秒前
沐风发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
muguang67完成签到,获得积分10
15秒前
Akim应助李佳慧采纳,获得10
16秒前
xiaxia42完成签到 ,获得积分10
16秒前
Jasper应助风-FBDD采纳,获得10
16秒前
in2you驳回了852应助
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733747
求助须知:如何正确求助?哪些是违规求助? 5350934
关于积分的说明 15325244
捐赠科研通 4878769
什么是DOI,文献DOI怎么找? 2621401
邀请新用户注册赠送积分活动 1570515
关于科研通互助平台的介绍 1527476