Detail-preserving image warping by enforcing smooth image sampling

图像扭曲 人工智能 计算机科学 计算机视觉 图像(数学) 采样(信号处理) 模式识别(心理学) 滤波器(信号处理)
作者
Qingrui Sha,Kaicong Sun,Caiwen Jiang,Mingze Xu,Xue Zhong,Xiaohuan Cao,Dinggang Shen
出处
期刊:Neural Networks [Elsevier]
卷期号:178: 106426-106426 被引量:1
标识
DOI:10.1016/j.neunet.2024.106426
摘要

Multi-phase dynamic contrast-enhanced magnetic resonance imaging image registration makes a substantial contribution to medical image analysis. However, existing methods (e.g., VoxelMorph, CycleMorph) often encounter the problem of image information misalignment in deformable registration tasks, posing challenges to the practical application. To address this issue, we propose a novel smooth image sampling method to align full organic information to realize detail-preserving image warping. In this paper, we clarify that the phenomenon about image information mismatch is attributed to imbalanced sampling. Then, a sampling frequency map constructed by sampling frequency estimators is utilized to instruct smooth sampling by reducing the spatial gradient and discrepancy between all-ones matrix and sampling frequency map. In addition, our estimator determines the sampling frequency of a grid voxel in the moving image by aggregating the sum of interpolation weights from warped non-grid sampling points in its vicinity and vectorially constructs sampling frequency map through projection and scatteration. We evaluate the effectiveness of our approach through experiments on two in-house datasets. The results showcase that our method preserves nearly complete details with ideal registration accuracy compared with several state-of-the-art registration methods. Additionally, our method exhibits a statistically significant difference in the regularity of the registration field compared to other methods, at a significance level of p < 0.05. Our code will be released at https://github.com/QingRui-Sha/SFM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助椰子熟了耶采纳,获得20
1秒前
hanyang965发布了新的文献求助10
1秒前
orixero应助喵呜采纳,获得10
1秒前
1秒前
1秒前
2秒前
en发布了新的文献求助10
2秒前
3秒前
白宝宝北北白应助氕氘氚采纳,获得10
3秒前
4秒前
进取拼搏完成签到,获得积分10
4秒前
hehsk完成签到,获得积分10
4秒前
无限鞅完成签到,获得积分20
4秒前
5秒前
DY完成签到 ,获得积分10
6秒前
郑仕完成签到,获得积分10
6秒前
6秒前
进取拼搏发布了新的文献求助10
7秒前
顺顺发布了新的文献求助10
7秒前
7秒前
在水一方应助涛涛采纳,获得10
7秒前
英姑应助义气的傲松采纳,获得10
8秒前
8秒前
哭泣蛋挞完成签到 ,获得积分10
9秒前
sweetbearm应助通~采纳,获得10
9秒前
田様应助吃饭用大碗采纳,获得10
10秒前
10秒前
11秒前
12秒前
阿斯蒂和琴酒完成签到 ,获得积分10
12秒前
珂珂发布了新的文献求助10
14秒前
14秒前
迟大猫应助我是站长才怪采纳,获得30
14秒前
15秒前
BaekHyun发布了新的文献求助10
15秒前
背后翠梅发布了新的文献求助30
15秒前
CCR发布了新的文献求助10
15秒前
su发布了新的文献求助10
17秒前
善学以致用应助钰c采纳,获得10
17秒前
Fundamental完成签到,获得积分20
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808