Bridging scales with Machine Learning: From first principles statistical mechanics to continuum phase field computations to study order–disorder transitions in LixCoO2

桥接(联网) 统计力学 计算 统计物理学 数学 计算机科学 理论物理学 物理 算法 计算机网络
作者
M. Faghih Shojaei,J. Holber,S. Das,Gregory H. Teichert,T. Mueller,L. Hung,V. Gavini,Krishna Garikipati
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:190: 105726-105726 被引量:1
标识
DOI:10.1016/j.jmps.2024.105726
摘要

LixTMO2 (TM=Ni, Co, Mn) forms an important family of cathode materials for Li-ion batteries, whose performance is strongly governed by Li composition-dependent crystal structure and phase stability. Here, we use LixCoO2 (LCO) as a model system to benchmark a machine learning-enabled framework for bridging scales in materials physics. We focus on two scales: (a) assemblies of thousands of atoms described by density functional theory-informed statistical mechanics, and (b) continuum phase field models to study the dynamics of order–disorder transitions in LCO. Central to the scale bridging is the rigorous, quantitatively accurate, representation of the free energy density and chemical potentials of this material system by coarse-graining formation energies for specific atomic configurations. We develop active learning workflows to train recently developed integrable deep neural networks for such high-dimensional free energy density and chemical potential functions. The resulting, first principles-informed, machine learning-enabled, phase-field computations allow us to study LCO cathodes' order–disorder transitions in terms of temperature, microstructure, and charge cycling. We highlight several insights gained to the dynamics of the phase transitions, and that have been made possible by the quantitatively rigorous scale bridging. To the best of our knowledge, such a scale bridging framework has not been previously demonstrated for LCO, or for materials systems of comparable technological interest. This approach can be expanded to other materials systems and can incorporate additional physics to that studied here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深夏完成签到 ,获得积分10
1秒前
MOOTEA发布了新的文献求助10
2秒前
2秒前
虚幻的紫烟完成签到,获得积分10
3秒前
Nancy发布了新的文献求助10
4秒前
7秒前
fzzf发布了新的文献求助10
8秒前
8秒前
中岛悠斗完成签到,获得积分10
8秒前
SciGPT应助MOOTEA采纳,获得10
10秒前
11秒前
安琪完成签到,获得积分10
12秒前
momoni完成签到 ,获得积分10
12秒前
12秒前
14秒前
王金娥完成签到,获得积分10
14秒前
wangjie发布了新的文献求助10
15秒前
专一的美女完成签到,获得积分10
16秒前
16秒前
16秒前
linus完成签到,获得积分10
16秒前
17秒前
yuzu完成签到,获得积分10
17秒前
王老大发布了新的文献求助10
18秒前
奋斗的若云完成签到,获得积分10
19秒前
19秒前
19秒前
21秒前
JamesPei应助李某采纳,获得10
21秒前
lin发布了新的文献求助10
22秒前
星辰大海应助am采纳,获得10
22秒前
核桃应助无情向梦采纳,获得10
22秒前
adasdad完成签到 ,获得积分10
22秒前
自有龙骧完成签到 ,获得积分10
23秒前
24秒前
wang发布了新的文献求助10
25秒前
Chelry发布了新的文献求助10
26秒前
香蕉觅云应助aa采纳,获得50
28秒前
ywq完成签到,获得积分10
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600