亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bridging scales with Machine Learning: From first principles statistical mechanics to continuum phase field computations to study order–disorder transitions in LixCoO2

桥接(联网) 统计力学 计算 统计物理学 数学 计算机科学 理论物理学 物理 算法 计算机网络
作者
M. Faghih Shojaei,J. Holber,S. Das,Gregory H. Teichert,T. Mueller,L. Hung,V. Gavini,Krishna Garikipati
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier BV]
卷期号:190: 105726-105726 被引量:1
标识
DOI:10.1016/j.jmps.2024.105726
摘要

LixTMO2 (TM=Ni, Co, Mn) forms an important family of cathode materials for Li-ion batteries, whose performance is strongly governed by Li composition-dependent crystal structure and phase stability. Here, we use LixCoO2 (LCO) as a model system to benchmark a machine learning-enabled framework for bridging scales in materials physics. We focus on two scales: (a) assemblies of thousands of atoms described by density functional theory-informed statistical mechanics, and (b) continuum phase field models to study the dynamics of order–disorder transitions in LCO. Central to the scale bridging is the rigorous, quantitatively accurate, representation of the free energy density and chemical potentials of this material system by coarse-graining formation energies for specific atomic configurations. We develop active learning workflows to train recently developed integrable deep neural networks for such high-dimensional free energy density and chemical potential functions. The resulting, first principles-informed, machine learning-enabled, phase-field computations allow us to study LCO cathodes' order–disorder transitions in terms of temperature, microstructure, and charge cycling. We highlight several insights gained to the dynamics of the phase transitions, and that have been made possible by the quantitatively rigorous scale bridging. To the best of our knowledge, such a scale bridging framework has not been previously demonstrated for LCO, or for materials systems of comparable technological interest. This approach can be expanded to other materials systems and can incorporate additional physics to that studied here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果乐松完成签到,获得积分10
6秒前
19秒前
小彭发布了新的文献求助10
22秒前
小彭完成签到,获得积分10
31秒前
科研通AI5应助qingzx采纳,获得10
40秒前
yb完成签到,获得积分10
1分钟前
葛力完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
德烁发布了新的文献求助10
1分钟前
1分钟前
qingzx发布了新的文献求助10
1分钟前
善学以致用应助Uluru采纳,获得10
1分钟前
qingzx完成签到 ,获得积分20
2分钟前
领导范儿应助qingzx采纳,获得30
2分钟前
2分钟前
lalala完成签到,获得积分10
2分钟前
汤圆儿发布了新的文献求助10
2分钟前
xiewuhua完成签到,获得积分10
3分钟前
poki完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
WZQ发布了新的文献求助10
4分钟前
科研通AI5应助烂漫春天采纳,获得10
4分钟前
4分钟前
打打应助科研通管家采纳,获得30
4分钟前
4分钟前
WZQ完成签到,获得积分10
4分钟前
qingshu发布了新的文献求助10
4分钟前
qingshu完成签到,获得积分20
4分钟前
moos完成签到 ,获得积分10
5分钟前
5分钟前
dcm发布了新的文献求助10
5分钟前
WerWu完成签到,获得积分10
5分钟前
003完成签到,获得积分10
6分钟前
上官若男应助科研通管家采纳,获得10
6分钟前
深深完成签到,获得积分10
6分钟前
7分钟前
失眠的桐完成签到 ,获得积分10
7分钟前
001完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031542
求助须知:如何正确求助?哪些是违规求助? 4266139
关于积分的说明 13298582
捐赠科研通 4075428
什么是DOI,文献DOI怎么找? 2229053
邀请新用户注册赠送积分活动 1237607
关于科研通互助平台的介绍 1162493