Bridging scales with Machine Learning: From first principles statistical mechanics to continuum phase field computations to study order–disorder transitions in LixCoO2

桥接(联网) 统计力学 计算 统计物理学 数学 计算机科学 理论物理学 物理 算法 计算机网络
作者
M. Faghih Shojaei,J. Holber,S. Das,Gregory H. Teichert,T. Mueller,L. Hung,V. Gavini,Krishna Garikipati
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:190: 105726-105726
标识
DOI:10.1016/j.jmps.2024.105726
摘要

LixTMO2 (TM=Ni, Co, Mn) forms an important family of cathode materials for Li-ion batteries, whose performance is strongly governed by Li composition-dependent crystal structure and phase stability. Here, we use LixCoO2 (LCO) as a model system to benchmark a machine learning-enabled framework for bridging scales in materials physics. We focus on two scales: (a) assemblies of thousands of atoms described by density functional theory-informed statistical mechanics, and (b) continuum phase field models to study the dynamics of order–disorder transitions in LCO. Central to the scale bridging is the rigorous, quantitatively accurate, representation of the free energy density and chemical potentials of this material system by coarse-graining formation energies for specific atomic configurations. We develop active learning workflows to train recently developed integrable deep neural networks for such high-dimensional free energy density and chemical potential functions. The resulting, first principles-informed, machine learning-enabled, phase-field computations allow us to study LCO cathodes' order–disorder transitions in terms of temperature, microstructure, and charge cycling. We highlight several insights gained to the dynamics of the phase transitions, and that have been made possible by the quantitatively rigorous scale bridging. To the best of our knowledge, such a scale bridging framework has not been previously demonstrated for LCO, or for materials systems of comparable technological interest. This approach can be expanded to other materials systems and can incorporate additional physics to that studied here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WZ0904发布了新的文献求助10
刚刚
刚刚
cyy发布了新的文献求助30
1秒前
兰格格完成签到,获得积分10
1秒前
1秒前
fat完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
汉堡包应助朴实凡柔采纳,获得10
3秒前
3秒前
小白完成签到,获得积分10
3秒前
TheQ发布了新的文献求助10
3秒前
yyyyxxxg发布了新的文献求助10
4秒前
小蘑菇应助HJCKYCG采纳,获得10
4秒前
HSF完成签到 ,获得积分10
5秒前
在水一方应助danxue采纳,获得10
5秒前
李健的粉丝团团长应助ywt采纳,获得10
6秒前
6秒前
6秒前
7秒前
欧阳香彤发布了新的文献求助10
7秒前
CyberHamster完成签到,获得积分10
8秒前
迷路念真发布了新的文献求助10
8秒前
battery完成签到 ,获得积分10
8秒前
Xue完成签到,获得积分20
8秒前
香梨发布了新的文献求助10
8秒前
9秒前
豆豆应助淡然的大碗采纳,获得10
9秒前
9秒前
9秒前
xuanfeng1998发布了新的文献求助10
9秒前
iNk应助小垃圾采纳,获得10
10秒前
11秒前
三里墩头发布了新的文献求助10
12秒前
12秒前
福star高照完成签到,获得积分10
12秒前
沉默迎蕾发布了新的文献求助10
12秒前
领导范儿应助云_123采纳,获得10
13秒前
欧阳香彤完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134700
求助须知:如何正确求助?哪些是违规求助? 2785629
关于积分的说明 7773333
捐赠科研通 2441325
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825