Bridging scales with Machine Learning: From first principles statistical mechanics to continuum phase field computations to study order–disorder transitions in LixCoO2

桥接(联网) 统计力学 计算 统计物理学 数学 计算机科学 理论物理学 物理 算法 计算机网络
作者
M. Faghih Shojaei,J. Holber,S. Das,Gregory H. Teichert,T. Mueller,L. Hung,V. Gavini,Krishna Garikipati
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:190: 105726-105726 被引量:1
标识
DOI:10.1016/j.jmps.2024.105726
摘要

LixTMO2 (TM=Ni, Co, Mn) forms an important family of cathode materials for Li-ion batteries, whose performance is strongly governed by Li composition-dependent crystal structure and phase stability. Here, we use LixCoO2 (LCO) as a model system to benchmark a machine learning-enabled framework for bridging scales in materials physics. We focus on two scales: (a) assemblies of thousands of atoms described by density functional theory-informed statistical mechanics, and (b) continuum phase field models to study the dynamics of order–disorder transitions in LCO. Central to the scale bridging is the rigorous, quantitatively accurate, representation of the free energy density and chemical potentials of this material system by coarse-graining formation energies for specific atomic configurations. We develop active learning workflows to train recently developed integrable deep neural networks for such high-dimensional free energy density and chemical potential functions. The resulting, first principles-informed, machine learning-enabled, phase-field computations allow us to study LCO cathodes' order–disorder transitions in terms of temperature, microstructure, and charge cycling. We highlight several insights gained to the dynamics of the phase transitions, and that have been made possible by the quantitatively rigorous scale bridging. To the best of our knowledge, such a scale bridging framework has not been previously demonstrated for LCO, or for materials systems of comparable technological interest. This approach can be expanded to other materials systems and can incorporate additional physics to that studied here.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yongji发布了新的文献求助30
1秒前
争取不秃顶的医学僧完成签到,获得积分10
1秒前
浮游应助含蓄又亦采纳,获得10
1秒前
如意如意发布了新的文献求助10
1秒前
luxia完成签到 ,获得积分10
2秒前
酷炫的幻丝完成签到 ,获得积分10
3秒前
5秒前
puhong zhang完成签到,获得积分10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
优雅的书瑶完成签到 ,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
Twonej应助科研通管家采纳,获得20
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
所所应助科研通管家采纳,获得30
5秒前
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
Luna_aaa应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
Criminology34应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
蓝天应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得20
6秒前
老福贵儿应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643469
求助须知:如何正确求助?哪些是违规求助? 4761277
关于积分的说明 15020918
捐赠科研通 4801788
什么是DOI,文献DOI怎么找? 2567067
邀请新用户注册赠送积分活动 1524836
关于科研通互助平台的介绍 1484403