Bridging scales with Machine Learning: From first principles statistical mechanics to continuum phase field computations to study order–disorder transitions in LixCoO2

桥接(联网) 统计力学 计算 统计物理学 数学 计算机科学 理论物理学 物理 算法 计算机网络
作者
M. Faghih Shojaei,J. Holber,S. Das,Gregory H. Teichert,T. Mueller,L. Hung,V. Gavini,Krishna Garikipati
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:190: 105726-105726 被引量:1
标识
DOI:10.1016/j.jmps.2024.105726
摘要

LixTMO2 (TM=Ni, Co, Mn) forms an important family of cathode materials for Li-ion batteries, whose performance is strongly governed by Li composition-dependent crystal structure and phase stability. Here, we use LixCoO2 (LCO) as a model system to benchmark a machine learning-enabled framework for bridging scales in materials physics. We focus on two scales: (a) assemblies of thousands of atoms described by density functional theory-informed statistical mechanics, and (b) continuum phase field models to study the dynamics of order–disorder transitions in LCO. Central to the scale bridging is the rigorous, quantitatively accurate, representation of the free energy density and chemical potentials of this material system by coarse-graining formation energies for specific atomic configurations. We develop active learning workflows to train recently developed integrable deep neural networks for such high-dimensional free energy density and chemical potential functions. The resulting, first principles-informed, machine learning-enabled, phase-field computations allow us to study LCO cathodes' order–disorder transitions in terms of temperature, microstructure, and charge cycling. We highlight several insights gained to the dynamics of the phase transitions, and that have been made possible by the quantitatively rigorous scale bridging. To the best of our knowledge, such a scale bridging framework has not been previously demonstrated for LCO, or for materials systems of comparable technological interest. This approach can be expanded to other materials systems and can incorporate additional physics to that studied here.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
鬼王神完成签到,获得积分10
2秒前
111发布了新的文献求助10
3秒前
LZX完成签到,获得积分10
3秒前
科研通AI6.1应助饮汽水采纳,获得10
4秒前
Orange应助YAN采纳,获得10
5秒前
6秒前
薄年完成签到,获得积分10
6秒前
6秒前
郑嘻嘻完成签到,获得积分10
8秒前
nenoaowu发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
11秒前
11秒前
11秒前
弥生妖刀发布了新的文献求助30
12秒前
吴亚运完成签到,获得积分10
12秒前
nenoaowu完成签到,获得积分10
13秒前
炙热灵枫发布了新的文献求助10
15秒前
柳树发布了新的文献求助10
15秒前
16秒前
HPP123发布了新的文献求助10
16秒前
lian发布了新的文献求助10
16秒前
merlin完成签到,获得积分10
17秒前
17秒前
饮汽水发布了新的文献求助10
17秒前
扶光完成签到 ,获得积分10
18秒前
YifanWang应助科研通管家采纳,获得30
19秒前
无极微光应助科研通管家采纳,获得20
19秒前
YifanWang应助科研通管家采纳,获得30
19秒前
asdfzxcv应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
无极微光应助科研通管家采纳,获得20
19秒前
传奇3应助haohaohao采纳,获得10
19秒前
19秒前
蒹葭苍苍应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741788
求助须知:如何正确求助?哪些是违规求助? 5404183
关于积分的说明 15343341
捐赠科研通 4883301
什么是DOI,文献DOI怎么找? 2625012
邀请新用户注册赠送积分活动 1573824
关于科研通互助平台的介绍 1530761