亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bridging scales with Machine Learning: From first principles statistical mechanics to continuum phase field computations to study order–disorder transitions in LixCoO2

桥接(联网) 统计力学 计算 统计物理学 数学 计算机科学 理论物理学 物理 算法 计算机网络
作者
M. Faghih Shojaei,J. Holber,S. Das,Gregory H. Teichert,T. Mueller,L. Hung,V. Gavini,Krishna Garikipati
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:190: 105726-105726 被引量:1
标识
DOI:10.1016/j.jmps.2024.105726
摘要

LixTMO2 (TM=Ni, Co, Mn) forms an important family of cathode materials for Li-ion batteries, whose performance is strongly governed by Li composition-dependent crystal structure and phase stability. Here, we use LixCoO2 (LCO) as a model system to benchmark a machine learning-enabled framework for bridging scales in materials physics. We focus on two scales: (a) assemblies of thousands of atoms described by density functional theory-informed statistical mechanics, and (b) continuum phase field models to study the dynamics of order–disorder transitions in LCO. Central to the scale bridging is the rigorous, quantitatively accurate, representation of the free energy density and chemical potentials of this material system by coarse-graining formation energies for specific atomic configurations. We develop active learning workflows to train recently developed integrable deep neural networks for such high-dimensional free energy density and chemical potential functions. The resulting, first principles-informed, machine learning-enabled, phase-field computations allow us to study LCO cathodes' order–disorder transitions in terms of temperature, microstructure, and charge cycling. We highlight several insights gained to the dynamics of the phase transitions, and that have been made possible by the quantitatively rigorous scale bridging. To the best of our knowledge, such a scale bridging framework has not been previously demonstrated for LCO, or for materials systems of comparable technological interest. This approach can be expanded to other materials systems and can incorporate additional physics to that studied here.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶叶蛋完成签到,获得积分10
2秒前
3秒前
4秒前
Atopos发布了新的文献求助10
7秒前
喜新厌旧完成签到,获得积分20
12秒前
汉堡包应助森距离采纳,获得10
14秒前
14秒前
科目三应助喜新厌旧采纳,获得10
18秒前
秦时明月发布了新的文献求助10
19秒前
小二郎应助Atopos采纳,获得10
20秒前
开朗的松完成签到,获得积分10
23秒前
Drwang完成签到,获得积分10
29秒前
33秒前
hhh发布了新的文献求助10
33秒前
拥抱完成签到 ,获得积分10
35秒前
35秒前
lll发布了新的文献求助10
37秒前
zyy关闭了zyy文献求助
38秒前
LONG发布了新的文献求助10
38秒前
39秒前
40秒前
量子星尘发布了新的文献求助10
40秒前
脑洞疼应助布林采纳,获得10
42秒前
缺粥完成签到 ,获得积分10
42秒前
abc发布了新的文献求助10
49秒前
lll完成签到,获得积分10
54秒前
hhh关闭了hhh文献求助
59秒前
hhuajw完成签到,获得积分10
1分钟前
LLL完成签到,获得积分10
1分钟前
LONG发布了新的文献求助10
1分钟前
科目三应助LLL采纳,获得10
1分钟前
搜集达人应助1461644768采纳,获得10
1分钟前
沧浪完成签到,获得积分10
1分钟前
histamin完成签到,获得积分10
1分钟前
qiu关闭了qiu文献求助
1分钟前
三年两篇以上SCI完成签到 ,获得积分20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
熬夜波比应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681194
求助须知:如何正确求助?哪些是违规求助? 5005631
关于积分的说明 15175172
捐赠科研通 4840849
什么是DOI,文献DOI怎么找? 2594550
邀请新用户注册赠送积分活动 1547639
关于科研通互助平台的介绍 1505605