Bridging scales with Machine Learning: From first principles statistical mechanics to continuum phase field computations to study order–disorder transitions in LixCoO2

桥接(联网) 统计力学 计算 统计物理学 数学 计算机科学 理论物理学 物理 算法 计算机网络
作者
M. Faghih Shojaei,J. Holber,S. Das,Gregory H. Teichert,T. Mueller,L. Hung,V. Gavini,Krishna Garikipati
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:190: 105726-105726 被引量:1
标识
DOI:10.1016/j.jmps.2024.105726
摘要

LixTMO2 (TM=Ni, Co, Mn) forms an important family of cathode materials for Li-ion batteries, whose performance is strongly governed by Li composition-dependent crystal structure and phase stability. Here, we use LixCoO2 (LCO) as a model system to benchmark a machine learning-enabled framework for bridging scales in materials physics. We focus on two scales: (a) assemblies of thousands of atoms described by density functional theory-informed statistical mechanics, and (b) continuum phase field models to study the dynamics of order–disorder transitions in LCO. Central to the scale bridging is the rigorous, quantitatively accurate, representation of the free energy density and chemical potentials of this material system by coarse-graining formation energies for specific atomic configurations. We develop active learning workflows to train recently developed integrable deep neural networks for such high-dimensional free energy density and chemical potential functions. The resulting, first principles-informed, machine learning-enabled, phase-field computations allow us to study LCO cathodes' order–disorder transitions in terms of temperature, microstructure, and charge cycling. We highlight several insights gained to the dynamics of the phase transitions, and that have been made possible by the quantitatively rigorous scale bridging. To the best of our knowledge, such a scale bridging framework has not been previously demonstrated for LCO, or for materials systems of comparable technological interest. This approach can be expanded to other materials systems and can incorporate additional physics to that studied here.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的螃蟹完成签到,获得积分10
刚刚
1秒前
艳艳子发布了新的文献求助10
2秒前
歪歪扣叉给歪歪扣叉的求助进行了留言
5秒前
1571424272完成签到,获得积分10
7秒前
7秒前
LTDJYYD完成签到,获得积分10
7秒前
Alice完成签到,获得积分10
7秒前
科研通AI6应助艳艳子采纳,获得10
8秒前
朱光辉发布了新的文献求助10
8秒前
9秒前
1_1完成签到,获得积分10
9秒前
柘苓完成签到 ,获得积分10
10秒前
WZzz完成签到 ,获得积分10
11秒前
可爱的函函应助老实善愁采纳,获得10
11秒前
冷知识发布了新的文献求助50
13秒前
JZW发布了新的文献求助10
13秒前
14秒前
花花完成签到,获得积分10
16秒前
东晓完成签到,获得积分10
18秒前
18秒前
学学学完成签到 ,获得积分10
18秒前
李欣完成签到,获得积分10
18秒前
Arthur完成签到,获得积分10
19秒前
19秒前
lgj666发布了新的文献求助10
21秒前
开心完成签到 ,获得积分10
21秒前
23秒前
小齐爱科研完成签到,获得积分10
23秒前
24秒前
24秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
romy完成签到,获得积分10
28秒前
友芸完成签到 ,获得积分10
28秒前
shanshan完成签到 ,获得积分10
29秒前
李欣发布了新的文献求助10
29秒前
dasheng_发布了新的文献求助10
30秒前
30秒前
Rimbaud完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539728
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599495
捐赠科研通 4567353
什么是DOI,文献DOI怎么找? 2504016
邀请新用户注册赠送积分活动 1481719
关于科研通互助平台的介绍 1453352