亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TasselNetV2++: A dual-branch network incorporating branch-level transfer learning and multilayer fusion for plant counting

学习迁移 传输(计算) 对偶(语法数字) 分支预测器 融合 计算机科学 人工智能 环境科学 并行计算 语言学 文学类 哲学 艺术
作者
Xiaoqin Xue,Wendong Niu,Jianxun Huang,Zhenxi Kang,Fenshan Hu,Decong Zheng,Zhiming James Wu,Haiyan Song
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:223: 109103-109103
标识
DOI:10.1016/j.compag.2024.109103
摘要

Plant counting plays an important role in evaluating planter effectiveness, assessing seed quality, devising agricultural management plans, and estimating crop yields. Given its significance and the ease of acquiring agricultural images, the development of an end-to-end image-based plant counting model applicable across diverse agricultural settings is crucial. The proposed TasselNetV2++, an improved version of TasselNetV2+ for plant counting, introduces notable enhancements to its encoder and counter while maintaining the existing normalizer. In the encoder, we designed a dual-branch architecture, with one branch being a customized YOLOv5s backbone and the other branch being the original encoder equipped with an attention mechanism. It is precisely the branch-level transfer learning, coupled with multilayer fusion, within the dual-branch architecture that significantly enhances the feature extraction capability of the network across a wide range of scenarios. Moreover, the counter has been enhanced with an attention mechanism that recalibrates its focus on crucial spatial locations and channel-wise features following average pooling. Experimental results demonstrate that TasselNetV2++ outperforms its predecessor across multiple counting tasks. Compared to TasselNetV2+, TasselNetV2++ achieves a substantial reduction in relative root mean squared error (rRMSE). Specifically, it brings a 33.3% relative decrease of rRMSE on the soybean seedlings counting dataset, 8.4% on the wheat ears detection dataset, 28.6% on the maize tassels counting dataset, and 18.0% on the sorghum heads counting dataset. Notably, ablation experiment demonstrates the indispensability of the branch-level transfer learning in achieving precise plant counting. Branch-level transfer learning achieves a notable relative decrease in rRMSE of 31.4% for soybean seedlings, 7.9% for wheat tassels, 36.5% for maize tassels, and 2.0% for sorghum heads. The proposed TasselNetV2++ attains remarkable advancements and introduces a straightforward yet highly effective branch-level transfer learning strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm完成签到,获得积分10
14秒前
寒梅恋雪完成签到 ,获得积分10
16秒前
33秒前
2024dsb完成签到 ,获得积分10
38秒前
科研通AI6.2应助hahasun采纳,获得30
44秒前
於傲松完成签到,获得积分10
46秒前
46秒前
46秒前
liujingyi发布了新的文献求助10
50秒前
Hello应助liujingyi采纳,获得10
59秒前
叮叮当当当完成签到 ,获得积分10
1分钟前
qqym完成签到 ,获得积分10
1分钟前
1分钟前
爆米花应助小明采纳,获得10
1分钟前
赎罪完成签到 ,获得积分10
2分钟前
automan发布了新的文献求助50
2分钟前
LONG完成签到 ,获得积分10
2分钟前
苗条盼山完成签到,获得积分10
2分钟前
木目丶完成签到 ,获得积分10
2分钟前
3分钟前
骆驼林子完成签到 ,获得积分10
3分钟前
阳光大山完成签到 ,获得积分10
3分钟前
郭老师发布了新的文献求助10
3分钟前
Leofar完成签到 ,获得积分10
3分钟前
张凯完成签到,获得积分20
3分钟前
今后应助科研通管家采纳,获得10
3分钟前
CodeCraft应助葱葱花卷采纳,获得10
3分钟前
3分钟前
一粟完成签到 ,获得积分10
3分钟前
小明发布了新的文献求助10
3分钟前
LK完成签到,获得积分10
3分钟前
king完成签到 ,获得积分10
3分钟前
今后应助于冰清采纳,获得10
3分钟前
3分钟前
于冰清发布了新的文献求助10
3分钟前
LXx完成签到 ,获得积分10
4分钟前
blenx完成签到,获得积分10
4分钟前
tiger完成签到,获得积分10
4分钟前
咚咚完成签到 ,获得积分10
4分钟前
张凯发布了新的文献求助10
4分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849802
求助须知:如何正确求助?哪些是违规求助? 6252005
关于积分的说明 15624797
捐赠科研通 4966199
什么是DOI,文献DOI怎么找? 2677797
邀请新用户注册赠送积分活动 1622125
关于科研通互助平台的介绍 1578202