TasselNetV2++: A dual-branch network incorporating branch-level transfer learning and multilayer fusion for plant counting

学习迁移 传输(计算) 对偶(语法数字) 分支预测器 融合 计算机科学 人工智能 环境科学 并行计算 艺术 语言学 哲学 文学类
作者
Xiaoqin Xue,Wendong Niu,Jianxun Huang,Zhenxi Kang,Fenshan Hu,Decong Zheng,Zhiming James Wu,Haiyan Song
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:223: 109103-109103
标识
DOI:10.1016/j.compag.2024.109103
摘要

Plant counting plays an important role in evaluating planter effectiveness, assessing seed quality, devising agricultural management plans, and estimating crop yields. Given its significance and the ease of acquiring agricultural images, the development of an end-to-end image-based plant counting model applicable across diverse agricultural settings is crucial. The proposed TasselNetV2++, an improved version of TasselNetV2+ for plant counting, introduces notable enhancements to its encoder and counter while maintaining the existing normalizer. In the encoder, we designed a dual-branch architecture, with one branch being a customized YOLOv5s backbone and the other branch being the original encoder equipped with an attention mechanism. It is precisely the branch-level transfer learning, coupled with multilayer fusion, within the dual-branch architecture that significantly enhances the feature extraction capability of the network across a wide range of scenarios. Moreover, the counter has been enhanced with an attention mechanism that recalibrates its focus on crucial spatial locations and channel-wise features following average pooling. Experimental results demonstrate that TasselNetV2++ outperforms its predecessor across multiple counting tasks. Compared to TasselNetV2+, TasselNetV2++ achieves a substantial reduction in relative root mean squared error (rRMSE). Specifically, it brings a 33.3% relative decrease of rRMSE on the soybean seedlings counting dataset, 8.4% on the wheat ears detection dataset, 28.6% on the maize tassels counting dataset, and 18.0% on the sorghum heads counting dataset. Notably, ablation experiment demonstrates the indispensability of the branch-level transfer learning in achieving precise plant counting. Branch-level transfer learning achieves a notable relative decrease in rRMSE of 31.4% for soybean seedlings, 7.9% for wheat tassels, 36.5% for maize tassels, and 2.0% for sorghum heads. The proposed TasselNetV2++ attains remarkable advancements and introduces a straightforward yet highly effective branch-level transfer learning strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Jason采纳,获得10
刚刚
刚刚
小迪应助H_C采纳,获得50
1秒前
CipherSage应助pp采纳,获得10
1秒前
CipherSage应助落寞丹萱采纳,获得10
3秒前
zz发布了新的文献求助10
4秒前
4秒前
4秒前
提米橘完成签到,获得积分20
4秒前
唐禹嘉完成签到,获得积分10
4秒前
sssnesstudy完成签到 ,获得积分10
5秒前
123完成签到,获得积分10
6秒前
naturehome发布了新的文献求助10
7秒前
8秒前
erzhi发布了新的文献求助10
8秒前
细腻妙柏发布了新的文献求助10
9秒前
9秒前
11秒前
Tink完成签到,获得积分10
12秒前
月儿发布了新的文献求助10
12秒前
神揽星辰入梦完成签到,获得积分10
12秒前
我是老大应助Huang采纳,获得10
12秒前
科研通AI2S应助知性的翠曼采纳,获得10
14秒前
15秒前
Dean发布了新的文献求助10
16秒前
19秒前
21秒前
22秒前
yyan发布了新的文献求助10
23秒前
24秒前
26秒前
DDDDD发布了新的文献求助10
28秒前
29秒前
30秒前
Huang发布了新的文献求助10
33秒前
知性的翠曼完成签到,获得积分10
34秒前
哈哈嗝完成签到 ,获得积分10
34秒前
40秒前
41秒前
Xiong Siqi完成签到,获得积分10
43秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433875
求助须知:如何正确求助?哪些是违规求助? 3031024
关于积分的说明 8940659
捐赠科研通 2719043
什么是DOI,文献DOI怎么找? 1491619
科研通“疑难数据库(出版商)”最低求助积分说明 689336
邀请新用户注册赠送积分活动 685486