Integration of physical information and reaction mechanism data for surrogate prediction model and multi-objective optimization of glycolic acid production

机制(生物学) 乙醇酸 生产(经济) 生化工程 计算机科学 工程类 生物 认识论 乳酸 哲学 宏观经济学 细菌 经济 遗传学
作者
Zhibo Zhang,Yaowei Wang,Dongrui Zhang,Deming Zhao,Huibin Shi,Hao Yan,Xin Zhou,Xiang Feng,Chaohe Yang
出处
期刊:Green chemical engineering [Elsevier BV]
标识
DOI:10.1016/j.gce.2024.06.002
摘要

With the continuous development of the chemical industry, the concept of advocating green development has become increasingly popular. Glycolic acid, serving as the monomer for biodegradable plastic polyglycolic acid, plays a crucial role in combating plastic pollution and fostering an eco-friendly society. The selective oxidation of ethylene glycol to produce glycolic acid represents a novel green production technology. Controlling reaction parameters to achieve multi-objective optimization of product distribution and direct CO2 emissions is crucial for scaling up the process. With the advent of the big data era, the integration of the chemical industry with artificial intelligence to achieve engineering scale-up is an important trend. This study proposes a neural network model for production prediction and optimization. The model is trained using experimental data, reaction mechanism data, and physical information, enabling rapid prediction of glycolic acid production. After validating with 40% of experimental data and 16% of reaction mechanism data, the model's prediction error was within ±5%, and the linear correlation coefficient R2 between the predicted values and actual values was 0.998. Furthermore, this study integrated a multi-objective optimization algorithm based on the model, enabling surrogate optimization of reaction parameters during production. After optimization, the direct CO2 emissions were reduced by over 99% and overall greenhouse gas emissions by 4.6%. The research paradigm proposed in this research can offer guidance and technical support for the optimized operation of ethylene glycol selective oxidation to glycolic acid.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaustal完成签到,获得积分10
1秒前
1秒前
李健的小迷弟应助yang采纳,获得10
1秒前
2秒前
5秒前
未央歌完成签到 ,获得积分10
5秒前
健忘的傲霜完成签到 ,获得积分10
6秒前
wuwuwu发布了新的文献求助10
6秒前
庶民文献发布了新的文献求助10
7秒前
zhao完成签到,获得积分20
7秒前
yocii完成签到,获得积分20
7秒前
完美世界应助Liu采纳,获得30
8秒前
8秒前
EasonYan发布了新的文献求助10
9秒前
10秒前
李爱国应助Timing侠采纳,获得10
11秒前
adeno完成签到,获得积分10
11秒前
11秒前
Leiziran发布了新的文献求助30
12秒前
可爱的函函应助嘻嘻采纳,获得10
12秒前
顾矜应助luo采纳,获得10
13秒前
txco发布了新的文献求助10
13秒前
庶民文献完成签到,获得积分20
14秒前
TING发布了新的文献求助30
14秒前
jify驳回了大个应助
16秒前
瘦瘦小猫咪完成签到 ,获得积分10
16秒前
Liu完成签到,获得积分20
16秒前
动听千风完成签到 ,获得积分10
16秒前
adeno发布了新的文献求助10
16秒前
Na发布了新的文献求助10
19秒前
汉堡包应助庶民文献采纳,获得10
21秒前
科目三应助adeno采纳,获得10
24秒前
TING完成签到,获得积分20
30秒前
科研通AI5应助EasonYan采纳,获得10
32秒前
DIY101发布了新的文献求助10
36秒前
Lucas应助香蕉闭月采纳,获得10
42秒前
李健的小迷弟应助WWWj采纳,获得10
42秒前
科研通AI5应助晓晓雪采纳,获得10
43秒前
研友_8KX15L完成签到 ,获得积分10
43秒前
44秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673078
求助须知:如何正确求助?哪些是违规求助? 3229040
关于积分的说明 9783391
捐赠科研通 2939397
什么是DOI,文献DOI怎么找? 1611041
邀请新用户注册赠送积分活动 760771
科研通“疑难数据库(出版商)”最低求助积分说明 736242