Tunable Hierarchical Pore Structure of Nickel–Cobalt Bimetallic Organic Framework Materials for High-Performance Supercapacitor

双金属片 超级电容器 材料科学 金属有机骨架 化学工程 纳米技术 化学 电极 冶金 电化学 有机化学 金属 吸附 物理化学 工程类
作者
Ningjie Lv,Mengde Li,Xiangbin Chen,N. D. Qi,Zhiquan Chen
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.4c04908
摘要

In this work, a series of Ni/Co-MOFs with high specific capacitances were synthesized as anode materials using a one-step hydrothermal reaction method. NaOH in different amounts (3, 4, 5, and 6 mmol) was added during the synthesis to tune the pore structure of Ni/Co-MOFs. It was found that the Ni/Co-MOF-3 with a NaOH amount of 5 mmol exhibits the largest specific surface area and pore volume, which provides more active sites for the electrochemical reaction and facilitates ion diffusion at the interface of the electrolyte solution/active material, thus increasing the capacitance of the electrode material. The electrochemical test results show that the specific capacitance of Ni/Co-MOF-3 reaches 1361 F g-1 at 1 A g-1. Impressively, the specific capacitance is still as high as 1214 F g-1 when the current density increases from 1 to 20 A g-1, with a high capacitance retention rate of about 89.2%. In addition, Ni/Co-MOF-3 and activated carbon were used as positive and negative materials, respectively, to assemble an asymmetric capacitor, which has a specific capacitance of 134.4 F g-1 at 1 A g-1 and an energy density of 47.69 Wh kg-1 at a power density of 800 W kg-1. The specific capacitance is 60% of the initial specific capacitance at 5 A g-1 after 10,000 cycles. At the same time, two such asymmetric capacitors can light up the red LED indicator for more than 30 min after being connected in series with a full charge, indicating that they have outstanding application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjww应助涛涛烧饼大饼采纳,获得10
1秒前
田様应助涛涛烧饼大饼采纳,获得10
1秒前
tqwerrt发布了新的文献求助10
2秒前
2秒前
xf发布了新的文献求助10
2秒前
2秒前
hhw完成签到,获得积分10
3秒前
4秒前
4秒前
7秒前
北辰完成签到,获得积分10
7秒前
tqwerrt完成签到,获得积分10
8秒前
letter发布了新的文献求助10
8秒前
梦旋发布了新的文献求助10
9秒前
天天快乐应助sunny采纳,获得10
9秒前
搜集达人应助高兴的蓝天采纳,获得30
10秒前
哈哈发布了新的文献求助10
11秒前
张老师发布了新的文献求助10
12秒前
Lucas应助陶醉书琴采纳,获得10
13秒前
14秒前
科研通AI5应助hhan采纳,获得30
15秒前
充电宝应助Xn采纳,获得10
16秒前
欣喜黄蜂发布了新的文献求助10
17秒前
石沐沐完成签到,获得积分20
18秒前
细心慕凝完成签到 ,获得积分10
21秒前
1111发布了新的文献求助10
21秒前
一蓑烟雨任平生应助zyj采纳,获得10
22秒前
卑鄙之风发布了新的文献求助10
22秒前
23秒前
可爱的函函应助结实星星采纳,获得10
23秒前
24秒前
ATLI应助eccentric采纳,获得20
26秒前
称心的语梦完成签到,获得积分10
28秒前
29秒前
负责的靖琪完成签到 ,获得积分10
30秒前
狗屎褚发布了新的文献求助10
31秒前
hhan发布了新的文献求助30
31秒前
cc发布了新的文献求助10
31秒前
852应助Xn采纳,获得10
32秒前
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673897
求助须知:如何正确求助?哪些是违规求助? 3229328
关于积分的说明 9785232
捐赠科研通 2939948
什么是DOI,文献DOI怎么找? 1611465
邀请新用户注册赠送积分活动 760916
科研通“疑难数据库(出版商)”最低求助积分说明 736344