A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing

油藏计算 神经形态工程学 记忆电阻器 计算机科学 边缘计算 信号处理 模拟信号 计算机硬件 信号(编程语言) 嵌入式系统 计算机体系结构 数字信号处理 GSM演进的增强数据速率 电子工程 工程类 人工神经网络 人工智能 循环神经网络 程序设计语言
作者
Ya‐Nan Zhong,Jianshi Tang,Xinyi Li,Xiangpeng Liang,Zhengwu Liu,Yijun Li,Yue Xi,Peng Yao,Zhenqi Hao,Bin Gao,He Qian,Huaqiang Wu
出处
期刊:Nature electronics [Nature Portfolio]
卷期号:5 (10): 672-681 被引量:181
标识
DOI:10.1038/s41928-022-00838-3
摘要

Reservoir computing offers a powerful neuromorphic computing architecture for spatiotemporal signal processing. To boost the power efficiency of the hardware implementations of reservoir computing systems, analogue devices and components—including spintronic oscillators, photonic modules, nanowire networks and memristors—have been used to partially replace the elements of fully digital systems. However, the development of fully analogue reservoir computing systems remains limited. Here we report a fully analogue reservoir computing system that uses dynamic memristors for the reservoir layer and non-volatile memristors for the readout layer. The system can efficiently process spatiotemporal signals in real time with three orders of magnitude lower power consumption than digital hardware. We illustrate the capabilities of the system using temporal arrhythmia detection and spatiotemporal dynamic gesture recognition tasks, achieving accuracies of 96.6% and 97.9%, respectively. Our memristor-based fully analogue reservoir computing system could be of use in edge computing applications that require extremely low power and hardware cost. Dynamic and non-volatile memristors can be used to create hardware-based reservoir and readout layers in artificial neural networks, providing a fully analogue signal processing chain for efficient data classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青黛完成签到 ,获得积分10
5秒前
大橙子发布了新的文献求助10
9秒前
领导范儿应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
14秒前
明钟达完成签到 ,获得积分10
22秒前
byyyy完成签到,获得积分10
25秒前
高高的哈密瓜完成签到 ,获得积分10
29秒前
Rondab应助橙汁采纳,获得10
32秒前
读书的时候完成签到,获得积分10
34秒前
颜云尔完成签到,获得积分10
45秒前
孤独雨梅完成签到,获得积分10
48秒前
woobinhua完成签到 ,获得积分10
48秒前
雪落你看不见完成签到,获得积分10
50秒前
十月天秤完成签到,获得积分0
51秒前
依文完成签到,获得积分20
51秒前
ymr完成签到 ,获得积分10
52秒前
哦哦哦完成签到 ,获得积分10
53秒前
jzmupyj完成签到,获得积分10
53秒前
大橙子发布了新的文献求助10
56秒前
xdlongchem完成签到,获得积分10
57秒前
量子星尘发布了新的文献求助10
59秒前
小梦完成签到,获得积分10
1分钟前
xuhang完成签到,获得积分10
1分钟前
ZSHAN完成签到,获得积分10
1分钟前
美满的机器猫完成签到,获得积分10
1分钟前
王小磊完成签到,获得积分10
1分钟前
谢花花完成签到 ,获得积分10
1分钟前
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
扁舟灬完成签到,获得积分10
1分钟前
Cpp完成签到 ,获得积分10
1分钟前
贤惠的老黑完成签到 ,获得积分10
1分钟前
ame1120发布了新的文献求助10
1分钟前
倦梦还完成签到,获得积分10
1分钟前
Sunrise完成签到,获得积分10
1分钟前
yyyy发布了新的文献求助10
1分钟前
自觉柠檬完成签到 ,获得积分10
1分钟前
ergatoid完成签到,获得积分10
1分钟前
Hao完成签到,获得积分10
1分钟前
月亮煮粥完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022