全球变暖
生态系统
草原
环境科学
气候变化
优势(遗传学)
生态学
大气科学
化学
生物
生物化学
基因
地质学
作者
Ning Zong,Ge Hou,Peili Shi,Minghua Song
标识
DOI:10.1016/j.scitotenv.2022.158923
摘要
Many recent studies have explored how global warming and increased nitrogen (N) deposition affect the structure and function of natural ecosystems. However, how ecosystems respond to the combination of warming and N enrichment remains unexplored, especially under asymmetric seasonal warming scenarios. We conducted a decade-long field experiment in an alpine grassland to investigate the effects of warming (ambient condition (NW), winter-only (WW), and year-round (YW) warming) and N addition on the temporal stability of communities. Although N addition significantly reduced community temporal stability in NW, WW, and YW, WW relieved the severely negative effects of N addition compared to NW and YW (from 47.7 % in NW and 76.1 % in YW to 18.6 % in WW under 80 kg N hm-2 year-1). The most remarkable finding is that the main factors driving community stability shifted with warming patterns. The increase in community dominance under NW was a significant driver of the decreased temporal stability in the community. However, the decrease in community stability caused by N addition was ascribed to the decreased stability of both dominant and common species under WW. In contrast, N addition decreased community temporal stability mainly via a decrease in species asynchrony under YW. Our results suggested that warming patterns can modulate the effects of N enhancement on community stability. To predict the effects of climate change on alpine grasslands accurately, the idiosyncratic effects of asymmetric seasonal warming under future climate change scenarios should be considered.
科研通智能强力驱动
Strongly Powered by AbleSci AI