亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FCCCSR_Glu: a semi-supervised learning model based on FCCCSR algorithm for prediction of glutarylation sites

分类器(UML) 计算机科学 人工智能 聚类分析 芯(光纤) 伪氨基酸组成 k-最近邻算法 模式识别(心理学) 鉴定(生物学) 算法 机器学习 氨基酸 化学 生物 电信 生物化学 植物 二肽
作者
Ning Qiao,Zedong Qi,Yue Wang,Ansheng Deng,Chen Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:4
标识
DOI:10.1093/bib/bbac421
摘要

Abstract Glutarylation is a post-translational modification which plays an irreplaceable role in various functions of the cell. Therefore, it is very important to accurately identify the glutarylation substrates and its corresponding glutarylation sites. In recent years, many computational methods of glutarylation sites have emerged one after another, but there are still many limitations, among which noisy data and the class imbalance problem caused by the uncertainty of non-glutarylation sites are great challenges. In this study, we propose a new semi-supervised learning algorithm, named FCCCSR, to identify reliable non-glutarylation lysine sites from unlabeled samples as negative samples. FCCCSR first finds core objects from positive samples according to reverse nearest neighbor information, and then clusters core objects based on natural neighbor structure. Finally, reliable negative samples are selected according to clustering result. With FCCCSR algorithm, we propose a new method named FCCCSR_Glu for glutarylation sites identification. In this study, multi-view features are extracted and fused to describe peptides, including amino acid composition, BLOSUM62, amino acid factors and composition of k-spaced amino acid pairs. Then, reliable negative samples selected by FCCCSR and positive samples are combined to establish models and XGBoost optimized by differential evolution algorithm is used as the classifier. On the independent testing dataset, FCCCSR_Glu achieves 85.18%, 98.36%, 94.31% and 0.8651 in sensitivity, specificity, accuracy and Matthew’s Correlation Coefficient, respectively, which is superior to state-of-the-art methods in predicting glutarylation sites. Therefore, FCCCSR_Glu can be a useful tool for glutarylation sites prediction and FCCCSR algorithm can effectively select reliable negative samples from unlabeled samples. The data and code are available on https://github.com/xbbxhbc/FCCCSR_Glu.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助ste56采纳,获得10
2秒前
9秒前
wangch198201完成签到 ,获得积分10
19秒前
慧慧发布了新的文献求助10
39秒前
58秒前
ste56发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
叶十七完成签到,获得积分10
1分钟前
欢喜怀绿发布了新的文献求助30
1分钟前
FashionBoy应助ste56采纳,获得10
1分钟前
1分钟前
情怀应助壮观的访枫采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
ste56发布了新的文献求助10
1分钟前
2分钟前
Orange应助ste56采纳,获得10
2分钟前
在水一方应助欢喜怀绿采纳,获得10
2分钟前
purplelove完成签到 ,获得积分10
2分钟前
2分钟前
Dannnn完成签到 ,获得积分10
2分钟前
领导范儿应助蓝色逍遥鱼采纳,获得10
2分钟前
3分钟前
3分钟前
SemiConduAG完成签到,获得积分10
3分钟前
蓝色逍遥鱼完成签到,获得积分10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
3分钟前
ste56发布了新的文献求助10
3分钟前
xz完成签到 ,获得积分10
3分钟前
3分钟前
Llawite发布了新的文献求助10
3分钟前
Llawite完成签到,获得积分20
3分钟前
3分钟前
锋芒不毕露完成签到,获得积分10
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234546
求助须知:如何正确求助?哪些是违规求助? 2880894
关于积分的说明 8217276
捐赠科研通 2548495
什么是DOI,文献DOI怎么找? 1377786
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623327