CPU-GPU Cooperative QoS Optimization of Personalized Digital Healthcare Using Machine Learning and Swarm Intelligence

计算机科学 工作量 服务质量 中央处理器 边缘计算 医疗保健 调度(生产过程) 分布式计算 人工智能 机器学习 GSM演进的增强数据速率 计算机网络 操作系统 运营管理 经济增长 经济
作者
Kun Cao,Yangguang Cui,Liying Li,Junlong Zhou,Shiyan Hu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2022.3207509
摘要

In recent decades, the rapid advances in information technology have promoted a widespread deployment of medical cyber-physical systems (MCPS), especially in the area of digital healthcare. In digital healthcare, medical edge devices empowered by CPU-GPU (Graphics Processing Unit) cooperative multiprocessor system-on-chips (MPSoCs) have a great potential in processing and managing the massive amounts of health-related data. However, most of the existing works on CPU-GPU cooperative MPSoCs cannot maintain a high-precision workload estimation since they simply leverage the worst-case execution cycles to pessimistically predict the workload of digital healthcare applications. Besides, they neglect the personalized requirements of individual healthcare applications and the lifetime reliability demands of heterogeneous CPU-GPU cores. As a result, the normal functions of medical edge devices and the quality-of-services (QoS) of digital healthcare applications are likely to suffer from underlying failures and degradation. In this paper, we explore CPU-GPU cooperative QoS optimization of personalized digital healthcare applications running on reliability guaranteed edge devices with the help of machine learning and swarm intelligence techniques. We first develop two novel predictors: one is a machine learning based predictor for application workload estimation, and the other is a feature-driven predictor for application QoS estimation. We then incorporate the two predictors into a swarm intelligent application scheduling scheme upon the cooperative dual-population evolutionary algorithm (c-DPEA) to find optimal application mapping and partitioning settings. Experimental results show that our solution not only augments the average QoS of whole digital healthcare applications by 15.7%, but also balances the QoS of individual digital healthcare applications by 64.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
勤劳小蕾发布了新的文献求助10
1秒前
跳跳糖发布了新的文献求助10
2秒前
负责雨安完成签到 ,获得积分10
2秒前
HF发布了新的文献求助10
3秒前
3秒前
HCl发布了新的文献求助10
3秒前
陈诚完成签到,获得积分10
3秒前
3秒前
JamesPei应助小章采纳,获得10
3秒前
果泥发布了新的文献求助10
3秒前
深情安青应助cxy3311采纳,获得10
3秒前
Mic应助科研通管家采纳,获得10
4秒前
Mic应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助你好纠结伦采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Mic应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得30
5秒前
ding应助科研通管家采纳,获得10
5秒前
9377应助科研通管家采纳,获得10
5秒前
5秒前
Mic应助科研通管家采纳,获得10
5秒前
李大鸟发布了新的文献求助10
5秒前
Mic应助科研通管家采纳,获得10
5秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
艾妮吗完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
Mic应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494854
求助须知:如何正确求助?哪些是违规求助? 4592603
关于积分的说明 14438036
捐赠科研通 4525457
什么是DOI,文献DOI怎么找? 2479459
邀请新用户注册赠送积分活动 1464253
关于科研通互助平台的介绍 1437216