CPU-GPU Cooperative QoS Optimization of Personalized Digital Healthcare Using Machine Learning and Swarm Intelligence

计算机科学 工作量 服务质量 中央处理器 边缘计算 医疗保健 调度(生产过程) 分布式计算 人工智能 机器学习 GSM演进的增强数据速率 计算机网络 操作系统 运营管理 经济增长 经济
作者
Kun Cao,Yangguang Cui,Liying Li,Junlong Zhou,Shiyan Hu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2022.3207509
摘要

In recent decades, the rapid advances in information technology have promoted a widespread deployment of medical cyber-physical systems (MCPS), especially in the area of digital healthcare. In digital healthcare, medical edge devices empowered by CPU-GPU (Graphics Processing Unit) cooperative multiprocessor system-on-chips (MPSoCs) have a great potential in processing and managing the massive amounts of health-related data. However, most of the existing works on CPU-GPU cooperative MPSoCs cannot maintain a high-precision workload estimation since they simply leverage the worst-case execution cycles to pessimistically predict the workload of digital healthcare applications. Besides, they neglect the personalized requirements of individual healthcare applications and the lifetime reliability demands of heterogeneous CPU-GPU cores. As a result, the normal functions of medical edge devices and the quality-of-services (QoS) of digital healthcare applications are likely to suffer from underlying failures and degradation. In this paper, we explore CPU-GPU cooperative QoS optimization of personalized digital healthcare applications running on reliability guaranteed edge devices with the help of machine learning and swarm intelligence techniques. We first develop two novel predictors: one is a machine learning based predictor for application workload estimation, and the other is a feature-driven predictor for application QoS estimation. We then incorporate the two predictors into a swarm intelligent application scheduling scheme upon the cooperative dual-population evolutionary algorithm (c-DPEA) to find optimal application mapping and partitioning settings. Experimental results show that our solution not only augments the average QoS of whole digital healthcare applications by 15.7%, but also balances the QoS of individual digital healthcare applications by 64.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
kkkkk完成签到,获得积分10
1秒前
三斤完成签到 ,获得积分20
1秒前
李茵发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
wyl发布了新的文献求助10
4秒前
5秒前
5秒前
小小小值钱完成签到,获得积分20
7秒前
wangjue发布了新的文献求助10
8秒前
9秒前
9秒前
木可发布了新的文献求助10
10秒前
10秒前
wyl完成签到,获得积分10
12秒前
汉堡包应助三斤采纳,获得10
13秒前
wangqiuhong发布了新的文献求助10
15秒前
16秒前
失眠的夜梦关注了科研通微信公众号
16秒前
今后应助HIT_C采纳,获得10
17秒前
今后应助SuperZzz采纳,获得10
18秒前
ZONG发布了新的文献求助10
20秒前
Nugget发布了新的文献求助10
21秒前
李茵完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
汉堡包应助风趣的老太采纳,获得10
24秒前
DongWei95发布了新的文献求助30
26秒前
26秒前
26秒前
猪猪hero发布了新的文献求助10
26秒前
斯文念波发布了新的文献求助10
26秒前
28秒前
30秒前
30秒前
断数循环应助任峰采纳,获得10
31秒前
FIN应助wuyu采纳,获得30
35秒前
越野蟹完成签到 ,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174