CPU-GPU Cooperative QoS Optimization of Personalized Digital Healthcare Using Machine Learning and Swarm Intelligence

计算机科学 工作量 服务质量 中央处理器 边缘计算 医疗保健 调度(生产过程) 分布式计算 人工智能 机器学习 GSM演进的增强数据速率 计算机网络 操作系统 运营管理 经济增长 经济
作者
Kun Cao,Yangguang Cui,Liying Li,Junlong Zhou,Shiyan Hu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tcbb.2022.3207509
摘要

In recent decades, the rapid advances in information technology have promoted a widespread deployment of medical cyber-physical systems (MCPS), especially in the area of digital healthcare. In digital healthcare, medical edge devices empowered by CPU-GPU (Graphics Processing Unit) cooperative multiprocessor system-on-chips (MPSoCs) have a great potential in processing and managing the massive amounts of health-related data. However, most of the existing works on CPU-GPU cooperative MPSoCs cannot maintain a high-precision workload estimation since they simply leverage the worst-case execution cycles to pessimistically predict the workload of digital healthcare applications. Besides, they neglect the personalized requirements of individual healthcare applications and the lifetime reliability demands of heterogeneous CPU-GPU cores. As a result, the normal functions of medical edge devices and the quality-of-services (QoS) of digital healthcare applications are likely to suffer from underlying failures and degradation. In this paper, we explore CPU-GPU cooperative QoS optimization of personalized digital healthcare applications running on reliability guaranteed edge devices with the help of machine learning and swarm intelligence techniques. We first develop two novel predictors: one is a machine learning based predictor for application workload estimation, and the other is a feature-driven predictor for application QoS estimation. We then incorporate the two predictors into a swarm intelligent application scheduling scheme upon the cooperative dual-population evolutionary algorithm (c-DPEA) to find optimal application mapping and partitioning settings. Experimental results show that our solution not only augments the average QoS of whole digital healthcare applications by 15.7%, but also balances the QoS of individual digital healthcare applications by 64.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xxxx发布了新的文献求助10
刚刚
风趣青槐完成签到,获得积分10
1秒前
1秒前
2秒前
妮妮完成签到,获得积分10
4秒前
可爱的函函应助wangzai采纳,获得10
5秒前
kiteWYL发布了新的文献求助10
6秒前
漂亮的佳宏完成签到,获得积分10
8秒前
9秒前
Fffm发布了新的文献求助10
9秒前
Atom完成签到,获得积分10
9秒前
顾矜应助Brocade采纳,获得10
10秒前
戴岱完成签到,获得积分10
11秒前
12秒前
kiteWYL完成签到,获得积分10
13秒前
15秒前
隐形半烟完成签到,获得积分10
15秒前
从容芮应助eva采纳,获得50
16秒前
双黄应助科研通管家采纳,获得20
17秒前
所所应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
18秒前
cocolu应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
隐形半烟发布了新的文献求助10
18秒前
19秒前
北偶发布了新的文献求助10
20秒前
桃子e完成签到 ,获得积分10
20秒前
lzy发布了新的文献求助10
21秒前
从容芮应助迷你的采文采纳,获得10
22秒前
22秒前
涂涂发布了新的文献求助10
22秒前
23秒前
24秒前
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313996
求助须知:如何正确求助?哪些是违规求助? 2946386
关于积分的说明 8529843
捐赠科研通 2622024
什么是DOI,文献DOI怎么找? 1434296
科研通“疑难数据库(出版商)”最低求助积分说明 665201
邀请新用户注册赠送积分活动 650792