Multicell Experiments for Marginal Treatment Effect Estimation of Digital Ads
计量经济学
估计
经济
广告
计算机科学
统计
数学
业务
管理
作者
Caio Waisman,Brett R. Gordon
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences] 日期:2025-01-15
标识
DOI:10.1287/mnsc.2023.01185
摘要
Randomized experiments with treatment and control groups are an important tool to measure the impacts of interventions. However, in experimental settings with one-sided noncompliance extant empirical approaches may not produce the estimands a decision maker needs to solve the problem of interest. For example, these experimental designs are common in digital advertising settings but typical methods do not yield effects that inform the intensive margin: how many consumers should be reached or how much should be spent on a campaign. We propose a solution that combines a novel multicell experimental design with modern estimation techniques that enables decision makers to solve problems with an intensive margin. Our design is straightforward to implement and does not require additional budget. We illustrate our method through simulations calibrated using an advertising experiment at Facebook, demonstrating its superior performance in various scenarios and its advantage over direct optimization approaches. This paper was accepted by Jean-Pierre Dubé, marketing. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01185 .