A Proteomics-Based Approach for Prediction of Different Cardiovascular Diseases and Dementia

医学 内科学 危险系数 比例危险模型 队列 冲程(发动机) 队列研究 疾病 心力衰竭 弗雷明翰风险评分 不利影响 置信区间 机械工程 工程类
作者
Frederick K. Ho,Patrick B. Mark,Jennifer S. Lees,Jill P. Pell,Rona J. Strawbridge,Dorien M. Kimenai,Nicholas L. Mills,Mark Woodward,John J.V. McMurray,Naveed Sattar,Paul Welsh
出处
期刊:Circulation [Lippincott Williams & Wilkins]
被引量:2
标识
DOI:10.1161/circulationaha.124.070454
摘要

BACKGROUND: Many studies have explored whether individual plasma protein biomarkers improve cardiovascular disease risk prediction. We sought to investigate the use of a plasma proteomics-based approach in predicting different cardiovascular outcomes. METHODS: Among 51 859 UK Biobank participants (mean age, 56.7 years; 45.5% male) without cardiovascular disease and with proteomics measurements, we examined the primary composite outcome of fatal and nonfatal coronary heart disease, stroke, or heart failure (major adverse cardiovascular events), as well as additional secondary cardiovascular outcomes. An exposome-wide association study was conducted using relative protein concentrations, adjusted for a range of classic, demographic, and lifestyle risk factors. A prediction model using only age, sex, and protein markers (protein model) was developed using a least absolute shrinkage and selection operator–regularized approach (derivation: 80% of cohort) and validated using split-sample testing (20% of cohort). Their performance was assessed by comparing calibration, net reclassification index, and c statistic with the PREVENT (Predicting Risk of CVD Events) risk score. RESULTS: Over a median 13.6 years of follow-up, 4857 participants experienced first major adverse cardiovascular events. After adjustment, the proteins most strongly associated with major adverse cardiovascular events included NT-proBNP (N-terminal pro B-type natriuretic peptide; hazard ratio [HR], 1.68 per SD increase), proADM (pro-adrenomedullin; HR, 1.60), GDF-15 (growth differentiation factor-15; HR, 1.47), WFDC2 (WAP four-disulfide core domain protein 2; HR, 1.46), and IGFBP4 (insulin-like growth factor-binding protein 4; HR, 1.41). In total, 222 separate proteins were predictors of all outcomes of interest in the protein model, and 86 were selected for the primary outcome specifically. In the validation cohort, compared with the PREVENT risk factor model, the protein model improved calibration, net reclassification (net reclassification index +0.09), and c statistic for major adverse cardiovascular events (+0.051). The protein model also improved the prediction of other outcomes, including ASCVD ( c statistic +0.035), myocardial infarction (+0.023), stroke (+0.024), aortic stenosis (+0.015), heart failure (+0.060), abdominal aortic aneurysm (+0.024), and dementia (+0.068). CONCLUSIONS: Measurement of targeted protein biomarkers produced superior prediction of aggregated and disaggregated cardiovascular events. This study represents an important proof of concept for the application of targeted proteomics in predicting a range of cardiovascular outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ljz910005完成签到,获得积分10
1秒前
认真的灵竹完成签到 ,获得积分10
2秒前
2秒前
丰富的小甜瓜完成签到,获得积分10
3秒前
evvj完成签到,获得积分10
3秒前
丘比特应助Rex采纳,获得10
3秒前
王QQ完成签到 ,获得积分10
4秒前
m123完成签到,获得积分10
4秒前
Russula_Chu应助小鳄鱼一只采纳,获得10
4秒前
nmm完成签到,获得积分10
4秒前
秦亦云完成签到,获得积分10
4秒前
zhuyy完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
xz完成签到 ,获得积分10
5秒前
danrushui777完成签到,获得积分10
5秒前
小小完成签到,获得积分10
5秒前
5秒前
疯少完成签到,获得积分10
5秒前
踏实的翠绿完成签到,获得积分10
6秒前
6秒前
一口一个完成签到,获得积分10
7秒前
快乐丹萱完成签到,获得积分10
7秒前
MeiQQ完成签到 ,获得积分10
8秒前
时尚的冰棍儿完成签到 ,获得积分10
8秒前
Wu完成签到,获得积分10
8秒前
司空问安发布了新的文献求助10
8秒前
Antonio完成签到 ,获得积分10
9秒前
靓丽安珊完成签到,获得积分10
10秒前
snowpaper完成签到,获得积分10
10秒前
10秒前
左岸完成签到,获得积分10
10秒前
暴躁的从露完成签到,获得积分20
10秒前
淡淡的白羊完成签到 ,获得积分10
10秒前
吃饭了没完成签到,获得积分10
11秒前
11秒前
11秒前
优雅的怀莲完成签到,获得积分10
12秒前
12秒前
xuan发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758373
求助须知:如何正确求助?哪些是违规求助? 3301280
关于积分的说明 10117157
捐赠科研通 3015743
什么是DOI,文献DOI怎么找? 1656238
邀请新用户注册赠送积分活动 790294
科研通“疑难数据库(出版商)”最低求助积分说明 753766