A Proteomics-Based Approach for Prediction of Different Cardiovascular Diseases and Dementia

医学 痴呆 蛋白质组学 疾病 重症监护医学 生物信息学 病理 生物化学 生物 基因 化学
作者
Frederick K. Ho,Patrick B. Mark,Jennifer S. Lees,Jill P. Pell,Rona J. Strawbridge,Dorien M. Kimenai,Nicholas L. Mills,Mark Woodward,John J.V. McMurray,Naveed Sattar,Paul Welsh
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1161/circulationaha.124.070454
摘要

BACKGROUND: Many studies have explored whether individual plasma protein biomarkers improve cardiovascular disease risk prediction. We sought to investigate the use of a plasma proteomics-based approach in predicting different cardiovascular outcomes. METHODS: Among 51 859 UK Biobank participants (mean age, 56.7 years; 45.5% male) without cardiovascular disease and with proteomics measurements, we examined the primary composite outcome of fatal and nonfatal coronary heart disease, stroke, or heart failure (major adverse cardiovascular events), as well as additional secondary cardiovascular outcomes. An exposome-wide association study was conducted using relative protein concentrations, adjusted for a range of classic, demographic, and lifestyle risk factors. A prediction model using only age, sex, and protein markers (protein model) was developed using a least absolute shrinkage and selection operator–regularized approach (derivation: 80% of cohort) and validated using split-sample testing (20% of cohort). Their performance was assessed by comparing calibration, net reclassification index, and c statistic with the PREVENT (Predicting Risk of CVD Events) risk score. RESULTS: Over a median 13.6 years of follow-up, 4857 participants experienced first major adverse cardiovascular events. After adjustment, the proteins most strongly associated with major adverse cardiovascular events included NT-proBNP (N-terminal pro B-type natriuretic peptide; hazard ratio [HR], 1.68 per SD increase), proADM (pro-adrenomedullin; HR, 1.60), GDF-15 (growth differentiation factor-15; HR, 1.47), WFDC2 (WAP four-disulfide core domain protein 2; HR, 1.46), and IGFBP4 (insulin-like growth factor-binding protein 4; HR, 1.41). In total, 222 separate proteins were predictors of all outcomes of interest in the protein model, and 86 were selected for the primary outcome specifically. In the validation cohort, compared with the PREVENT risk factor model, the protein model improved calibration, net reclassification (net reclassification index +0.09), and c statistic for major adverse cardiovascular events (+0.051). The protein model also improved the prediction of other outcomes, including ASCVD ( c statistic +0.035), myocardial infarction (+0.023), stroke (+0.024), aortic stenosis (+0.015), heart failure (+0.060), abdominal aortic aneurysm (+0.024), and dementia (+0.068). CONCLUSIONS: Measurement of targeted protein biomarkers produced superior prediction of aggregated and disaggregated cardiovascular events. This study represents an important proof of concept for the application of targeted proteomics in predicting a range of cardiovascular outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默荔枝发布了新的文献求助10
刚刚
刚刚
扶摇直上发布了新的文献求助10
1秒前
CodeCraft应助戚雅柔采纳,获得10
1秒前
xylxyl完成签到,获得积分20
2秒前
2秒前
思源应助一条猫采纳,获得10
4秒前
科研通AI2S应助开心市民采纳,获得10
4秒前
忧郁的火车完成签到,获得积分10
4秒前
可耐的手机完成签到 ,获得积分10
5秒前
huhuhu发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
Jasper应助liuliu采纳,获得10
8秒前
震动的嘉懿完成签到 ,获得积分20
9秒前
10秒前
情怀应助亓大大采纳,获得10
11秒前
戚雅柔发布了新的文献求助10
13秒前
13秒前
13秒前
尾气是菠萝口味完成签到,获得积分20
14秒前
在路上完成签到 ,获得积分10
14秒前
15秒前
17秒前
Q123ba叭完成签到 ,获得积分10
17秒前
18秒前
唠叨的可燕完成签到 ,获得积分10
19秒前
19秒前
21秒前
21秒前
21秒前
小二郎应助一大碗芋泥采纳,获得10
22秒前
22秒前
24秒前
25秒前
一条猫发布了新的文献求助10
25秒前
Ava应助轨迹采纳,获得10
26秒前
www完成签到,获得积分20
27秒前
搜集达人应助鱼鱼和石头采纳,获得30
28秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
2021下半年大理州人民医院招聘试题及答案 1000
大理州人民医院2021上半年(卫生类)人员招聘试题及解析 1000
2023云南大理州事业单位招聘专业技术人员医疗岗162人笔试历年典型考题及考点剖析附带答案详解 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3113948
求助须知:如何正确求助?哪些是违规求助? 2764217
关于积分的说明 7677686
捐赠科研通 2419367
什么是DOI,文献DOI怎么找? 1284447
科研通“疑难数据库(出版商)”最低求助积分说明 619663
版权声明 599685