A Proteomics-Based Approach for Prediction of Different Cardiovascular Diseases and Dementia

医学 内科学 危险系数 比例危险模型 队列 冲程(发动机) 队列研究 疾病 心力衰竭 弗雷明翰风险评分 不利影响 置信区间 机械工程 工程类
作者
Frederick K. Ho,Patrick B. Mark,Jennifer S. Lees,Jill P. Pell,Rona J. Strawbridge,Dorien M. Kimenai,Nicholas L. Mills,Mark Woodward,John J.V. McMurray,Naveed Sattar,Paul Welsh
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:151 (5): 277-287 被引量:15
标识
DOI:10.1161/circulationaha.124.070454
摘要

BACKGROUND: Many studies have explored whether individual plasma protein biomarkers improve cardiovascular disease risk prediction. We sought to investigate the use of a plasma proteomics-based approach in predicting different cardiovascular outcomes. METHODS: Among 51 859 UK Biobank participants (mean age, 56.7 years; 45.5% male) without cardiovascular disease and with proteomics measurements, we examined the primary composite outcome of fatal and nonfatal coronary heart disease, stroke, or heart failure (major adverse cardiovascular events), as well as additional secondary cardiovascular outcomes. An exposome-wide association study was conducted using relative protein concentrations, adjusted for a range of classic, demographic, and lifestyle risk factors. A prediction model using only age, sex, and protein markers (protein model) was developed using a least absolute shrinkage and selection operator–regularized approach (derivation: 80% of cohort) and validated using split-sample testing (20% of cohort). Their performance was assessed by comparing calibration, net reclassification index, and c statistic with the PREVENT (Predicting Risk of CVD Events) risk score. RESULTS: Over a median 13.6 years of follow-up, 4857 participants experienced first major adverse cardiovascular events. After adjustment, the proteins most strongly associated with major adverse cardiovascular events included NT-proBNP (N-terminal pro B-type natriuretic peptide; hazard ratio [HR], 1.68 per SD increase), proADM (pro-adrenomedullin; HR, 1.60), GDF-15 (growth differentiation factor-15; HR, 1.47), WFDC2 (WAP four-disulfide core domain protein 2; HR, 1.46), and IGFBP4 (insulin-like growth factor-binding protein 4; HR, 1.41). In total, 222 separate proteins were predictors of all outcomes of interest in the protein model, and 86 were selected for the primary outcome specifically. In the validation cohort, compared with the PREVENT risk factor model, the protein model improved net reclassification (net reclassification index +0.09), and c statistic (+0.051) for major adverse cardiovascular events. The protein model also improved the prediction of other outcomes, including ASCVD ( c statistic +0.035), myocardial infarction (+0.023), stroke (+0.024), aortic stenosis (+0.015), heart failure (+0.060), abdominal aortic aneurysm (+0.024), and dementia (+0.068). CONCLUSIONS: Measurement of targeted protein biomarkers produced superior prediction of aggregated and disaggregated cardiovascular events. This study represents proof of concept for the application of targeted proteomics in predicting a range of cardiovascular outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bowman发布了新的文献求助10
刚刚
1秒前
dd发布了新的文献求助10
1秒前
2秒前
苏源完成签到,获得积分10
2秒前
1123发布了新的文献求助10
3秒前
Lucas完成签到,获得积分10
4秒前
ding应助归海诗珊采纳,获得10
4秒前
温暖天与应助361采纳,获得10
4秒前
王嘉欣完成签到,获得积分20
5秒前
5秒前
勤奋一一应助顺利的慕儿采纳,获得10
5秒前
5秒前
wsd发布了新的文献求助10
6秒前
yuki发布了新的文献求助10
7秒前
dd完成签到,获得积分10
9秒前
9秒前
jzt12138发布了新的文献求助10
9秒前
9秒前
9秒前
lt发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
安琪完成签到,获得积分20
11秒前
123完成签到,获得积分20
12秒前
阿塔塔发布了新的文献求助10
13秒前
苌枫完成签到,获得积分10
13秒前
butter0903发布了新的文献求助10
13秒前
在水一方应助wsd采纳,获得10
14秒前
15秒前
CodeCraft应助星星之火采纳,获得10
15秒前
或许平凡发布了新的文献求助10
15秒前
15秒前
初秋发布了新的文献求助10
16秒前
16秒前
17秒前
落后的访枫完成签到 ,获得积分10
19秒前
安琪发布了新的文献求助30
20秒前
果然又没人理我关注了科研通微信公众号
20秒前
zzzdx完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684712
求助须知:如何正确求助?哪些是违规求助? 5038581
关于积分的说明 15185077
捐赠科研通 4843916
什么是DOI,文献DOI怎么找? 2597004
邀请新用户注册赠送积分活动 1549597
关于科研通互助平台的介绍 1508096