A Proteomics-Based Approach for Prediction of Different Cardiovascular Diseases and Dementia

医学 内科学 危险系数 比例危险模型 队列 冲程(发动机) 队列研究 疾病 心力衰竭 弗雷明翰风险评分 不利影响 置信区间 机械工程 工程类
作者
Frederick K. Ho,Patrick B. Mark,Jennifer S. Lees,Jill P. Pell,Rona J. Strawbridge,Dorien M. Kimenai,Nicholas L. Mills,Mark Woodward,John J.V. McMurray,Naveed Sattar,Paul Welsh
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:151 (5): 277-287 被引量:15
标识
DOI:10.1161/circulationaha.124.070454
摘要

BACKGROUND: Many studies have explored whether individual plasma protein biomarkers improve cardiovascular disease risk prediction. We sought to investigate the use of a plasma proteomics-based approach in predicting different cardiovascular outcomes. METHODS: Among 51 859 UK Biobank participants (mean age, 56.7 years; 45.5% male) without cardiovascular disease and with proteomics measurements, we examined the primary composite outcome of fatal and nonfatal coronary heart disease, stroke, or heart failure (major adverse cardiovascular events), as well as additional secondary cardiovascular outcomes. An exposome-wide association study was conducted using relative protein concentrations, adjusted for a range of classic, demographic, and lifestyle risk factors. A prediction model using only age, sex, and protein markers (protein model) was developed using a least absolute shrinkage and selection operator–regularized approach (derivation: 80% of cohort) and validated using split-sample testing (20% of cohort). Their performance was assessed by comparing calibration, net reclassification index, and c statistic with the PREVENT (Predicting Risk of CVD Events) risk score. RESULTS: Over a median 13.6 years of follow-up, 4857 participants experienced first major adverse cardiovascular events. After adjustment, the proteins most strongly associated with major adverse cardiovascular events included NT-proBNP (N-terminal pro B-type natriuretic peptide; hazard ratio [HR], 1.68 per SD increase), proADM (pro-adrenomedullin; HR, 1.60), GDF-15 (growth differentiation factor-15; HR, 1.47), WFDC2 (WAP four-disulfide core domain protein 2; HR, 1.46), and IGFBP4 (insulin-like growth factor-binding protein 4; HR, 1.41). In total, 222 separate proteins were predictors of all outcomes of interest in the protein model, and 86 were selected for the primary outcome specifically. In the validation cohort, compared with the PREVENT risk factor model, the protein model improved net reclassification (net reclassification index +0.09), and c statistic (+0.051) for major adverse cardiovascular events. The protein model also improved the prediction of other outcomes, including ASCVD ( c statistic +0.035), myocardial infarction (+0.023), stroke (+0.024), aortic stenosis (+0.015), heart failure (+0.060), abdominal aortic aneurysm (+0.024), and dementia (+0.068). CONCLUSIONS: Measurement of targeted protein biomarkers produced superior prediction of aggregated and disaggregated cardiovascular events. This study represents proof of concept for the application of targeted proteomics in predicting a range of cardiovascular outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助爱听歌的桐采纳,获得10
刚刚
远志发布了新的文献求助10
1秒前
打打应助灰太狼大王采纳,获得10
2秒前
严饭饭发布了新的文献求助10
2秒前
3秒前
枯叶蝶发布了新的文献求助20
3秒前
哈哈哈哈发布了新的文献求助10
3秒前
hhh发布了新的文献求助50
4秒前
清脆巧蕊完成签到,获得积分10
4秒前
adkins完成签到,获得积分10
4秒前
lalala发布了新的文献求助20
5秒前
汉堡包应助YY采纳,获得10
5秒前
rong发布了新的文献求助30
5秒前
5秒前
6秒前
Akim应助Gleast采纳,获得10
6秒前
领导范儿应助王王的苏采纳,获得10
6秒前
清椰椰完成签到,获得积分10
7秒前
Lucas应助hsn采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
领导范儿应助JY采纳,获得10
8秒前
无极微光应助慕豁采纳,获得20
8秒前
研友_VZG7GZ应助宝z采纳,获得10
8秒前
9秒前
阿喵发布了新的文献求助10
9秒前
积极访旋发布了新的文献求助10
9秒前
ruopiao应助ChaseY采纳,获得10
9秒前
pay完成签到 ,获得积分10
9秒前
10秒前
10秒前
裴盼夏发布了新的文献求助10
10秒前
猪猪hero发布了新的文献求助10
12秒前
王贝贝发布了新的文献求助10
12秒前
忧郁凡桃发布了新的文献求助30
12秒前
明理冷梅发布了新的文献求助10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助风中书竹采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506145
求助须知:如何正确求助?哪些是违规求助? 4601666
关于积分的说明 14478195
捐赠科研通 4535688
什么是DOI,文献DOI怎么找? 2485572
邀请新用户注册赠送积分活动 1468465
关于科研通互助平台的介绍 1440943