Integrating Protein Language Model and Molecular Dynamics Simulations to Discover Antibiofouling Peptides

生物污染 分子动力学 纳米技术 氨基酸 肽库 肽序列 计算生物学 计算机科学 生物系统 生物 化学 人工智能 组合化学 材料科学 生物化学 计算化学 基因
作者
Ibrahim A. Imam,Sean Bailey,Duolin Wang,Shuai Zeng,Dong Xu,Qing Shao
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.4c04140
摘要

Antibiofouling peptide materials prevent the nonspecific adsorption of proteins on devices, enabling them to perform their designed functions as desired in complex biological environments. Due to their importance, research on antibiofouling peptide materials has been one of the central subjects of interfacial engineering. However, only a few antibiofouling peptide sequences have been developed. This narrow scope of antibiofouling peptide materials limits their capacity to adapt to the broad spectrum of application scenarios. To address this issue, we searched for antibiofouling peptides in the vast sequence pool of the microbiome library using a combination of deep learning-based high-throughput search and molecular dynamics (MD) simulations. A random forest-based model with an ensemble of ten independent classifiers was developed. Each classifier was trained by prompt-tuning the foundational protein language model Evolution Scaling Modeling version 2 (ESM2) on a distinct training data set. We constructed the databases containing the same amount of antibiofouling and biofouling peptide sequences to attenuate the bias of the existing databases. MD simulations were conducted to investigate the interfacial properties of six selected peptide candidates and their interactions with a lysozyme protein. Two known antibiofouling peptides, (glutamic acid (E)-lysine (K))15 and (EK-proline (P))10, and one known fouling peptide, (glycine)30, were used as the reference. The MD simulation results indicate that five of the six peptides present the potential to resist biofouling. Our research implies that deep learning and molecular simulations can be integrated to discover functional peptide materials for interfacial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术交流111完成签到,获得积分20
1秒前
毛豆应助star采纳,获得10
1秒前
不懂白完成签到 ,获得积分10
2秒前
毛豆应助lilian采纳,获得10
2秒前
hzauhzau发布了新的文献求助10
3秒前
noobmaster关注了科研通微信公众号
3秒前
李健的小迷弟应助执着寇采纳,获得10
3秒前
3秒前
5秒前
研友_8WMQ5n完成签到,获得积分10
5秒前
6秒前
飞飞完成签到,获得积分10
7秒前
方赫然应助奋斗梦旋采纳,获得10
8秒前
8秒前
SciGPT应助冷艳笑卉采纳,获得10
8秒前
9秒前
科研通AI2S应助Wally采纳,获得10
10秒前
Lou发布了新的文献求助10
11秒前
12秒前
容玄完成签到,获得积分10
12秒前
13秒前
dandany完成签到,获得积分10
13秒前
海bro完成签到,获得积分10
17秒前
两臂阿童木完成签到 ,获得积分10
17秒前
充电宝应助贪玩书包采纳,获得10
18秒前
十一完成签到,获得积分10
18秒前
昌笑白完成签到,获得积分10
18秒前
18秒前
研友_VZG7GZ应助伴夏采纳,获得10
20秒前
科研通AI2S应助Ridley采纳,获得10
20秒前
Six_seven完成签到,获得积分10
20秒前
Amazing完成签到 ,获得积分10
21秒前
dsdvjdsf发布了新的文献求助30
22秒前
Soph发布了新的文献求助10
23秒前
25秒前
25秒前
动次打次完成签到,获得积分0
27秒前
Yziii应助竹落笙笙采纳,获得10
27秒前
28秒前
DireWolf完成签到 ,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557