Integrating Protein Language Model and Molecular Dynamics Simulations to Discover Antibiofouling Peptides

生物污染 分子动力学 纳米技术 氨基酸 肽库 肽序列 计算生物学 计算机科学 生物系统 生物 化学 人工智能 组合化学 材料科学 生物化学 计算化学 基因
作者
Ibrahim A. Imam,Sean Bailey,Duolin Wang,Shuai Zeng,Dong Xu,Qing Shao
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.4c04140
摘要

Antibiofouling peptide materials prevent the nonspecific adsorption of proteins on devices, enabling them to perform their designed functions as desired in complex biological environments. Due to their importance, research on antibiofouling peptide materials has been one of the central subjects of interfacial engineering. However, only a few antibiofouling peptide sequences have been developed. This narrow scope of antibiofouling peptide materials limits their capacity to adapt to the broad spectrum of application scenarios. To address this issue, we searched for antibiofouling peptides in the vast sequence pool of the microbiome library using a combination of deep learning-based high-throughput search and molecular dynamics (MD) simulations. A random forest-based model with an ensemble of ten independent classifiers was developed. Each classifier was trained by prompt-tuning the foundational protein language model Evolution Scaling Modeling version 2 (ESM2) on a distinct training data set. We constructed the databases containing the same amount of antibiofouling and biofouling peptide sequences to attenuate the bias of the existing databases. MD simulations were conducted to investigate the interfacial properties of six selected peptide candidates and their interactions with a lysozyme protein. Two known antibiofouling peptides, (glutamic acid (E)-lysine (K))15 and (EK-proline (P))10, and one known fouling peptide, (glycine)30, were used as the reference. The MD simulation results indicate that five of the six peptides present the potential to resist biofouling. Our research implies that deep learning and molecular simulations can be integrated to discover functional peptide materials for interfacial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
两先生完成签到 ,获得积分10
1秒前
豆dou发布了新的文献求助10
1秒前
丘比特应助SS采纳,获得10
2秒前
2秒前
瑶一瑶完成签到,获得积分10
2秒前
接受所有饼干完成签到,获得积分10
2秒前
富贵儿完成签到,获得积分10
3秒前
MHB应助Khr1stINK采纳,获得10
3秒前
cinderella完成签到,获得积分10
4秒前
5秒前
lin发布了新的文献求助10
6秒前
tmpstlml完成签到,获得积分10
6秒前
LUNWENREQUEST完成签到,获得积分20
6秒前
6秒前
Orange应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
RC_Wang应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得30
7秒前
111发布了新的文献求助10
8秒前
keyanlv完成签到,获得积分10
8秒前
富贵儿发布了新的文献求助10
10秒前
冯度翩翩完成签到,获得积分10
10秒前
sweetbearm应助健壮的涑采纳,获得10
10秒前
村里傻小子完成签到,获得积分20
10秒前
田様应助Khr1stINK采纳,获得10
11秒前
傲娇的凡旋应助小周采纳,获得10
12秒前
潇潇潇完成签到 ,获得积分10
12秒前
13秒前
英俊的铭应助XShu采纳,获得10
14秒前
Hello应助一只大肥猫采纳,获得10
15秒前
allyceacheng完成签到,获得积分10
15秒前
科研通AI5应助phd采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808