Integrating Protein Language Model and Molecular Dynamics Simulations to Discover Antibiofouling Peptides

生物污染 分子动力学 纳米技术 氨基酸 肽库 肽序列 计算生物学 计算机科学 生物系统 生物 化学 人工智能 组合化学 材料科学 生物化学 计算化学 基因
作者
Ibrahim A. Imam,Sean Bailey,Duolin Wang,Shuai Zeng,Dong Xu,Qing Shao
出处
期刊:Langmuir [American Chemical Society]
标识
DOI:10.1021/acs.langmuir.4c04140
摘要

Antibiofouling peptide materials prevent the nonspecific adsorption of proteins on devices, enabling them to perform their designed functions as desired in complex biological environments. Due to their importance, research on antibiofouling peptide materials has been one of the central subjects of interfacial engineering. However, only a few antibiofouling peptide sequences have been developed. This narrow scope of antibiofouling peptide materials limits their capacity to adapt to the broad spectrum of application scenarios. To address this issue, we searched for antibiofouling peptides in the vast sequence pool of the microbiome library using a combination of deep learning-based high-throughput search and molecular dynamics (MD) simulations. A random forest-based model with an ensemble of ten independent classifiers was developed. Each classifier was trained by prompt-tuning the foundational protein language model Evolution Scaling Modeling version 2 (ESM2) on a distinct training data set. We constructed the databases containing the same amount of antibiofouling and biofouling peptide sequences to attenuate the bias of the existing databases. MD simulations were conducted to investigate the interfacial properties of six selected peptide candidates and their interactions with a lysozyme protein. Two known antibiofouling peptides, (glutamic acid (E)-lysine (K))15 and (EK-proline (P))10, and one known fouling peptide, (glycine)30, were used as the reference. The MD simulation results indicate that five of the six peptides present the potential to resist biofouling. Our research implies that deep learning and molecular simulations can be integrated to discover functional peptide materials for interfacial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄念真发布了新的文献求助10
刚刚
1秒前
3秒前
4秒前
aaaaaa发布了新的文献求助10
4秒前
5秒前
6秒前
一米八发布了新的文献求助10
8秒前
8秒前
大个应助李麟采纳,获得10
8秒前
9秒前
杨枝甘露发布了新的文献求助10
9秒前
xx发布了新的文献求助10
10秒前
10秒前
跳跃的邪欢完成签到,获得积分10
10秒前
科研通AI2S应助椰青冰萃采纳,获得30
10秒前
11秒前
xlxl发布了新的文献求助10
12秒前
12秒前
KK发布了新的文献求助10
13秒前
吴彦祖发布了新的文献求助10
13秒前
跑在颖发布了新的文献求助10
15秒前
15秒前
王是SCI2发布了新的文献求助10
16秒前
橙子发布了新的文献求助10
18秒前
善良山菡完成签到,获得积分10
22秒前
Blank完成签到 ,获得积分10
23秒前
椰青冰萃完成签到,获得积分10
24秒前
Ava应助Brian采纳,获得10
24秒前
万能图书馆应助跑在颖采纳,获得10
24秒前
24秒前
27秒前
U9A发布了新的文献求助10
27秒前
科yt发布了新的文献求助10
29秒前
Hello应助呼呼采纳,获得10
31秒前
xx完成签到 ,获得积分10
32秒前
33秒前
35秒前
35秒前
小马甲应助bbdd2334采纳,获得10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517