生物
清脆的
基因组编辑
DNA
Cas9
遗传学
载体(分子生物学)
基因组
计算生物学
引导RNA
病毒载体
病毒学
基因
重组DNA
作者
Zhen Li,Xiaoling Wang,Josephine M. Janssen,Jin Liu,Francesca Tasca,Rob C. Hoeben,Manuel A. F. V. Gonçalves
摘要
Genome editing based on programmable nucleases and donor DNA constructs permits introducing specific base-pair changes and complete transgenes or live-cell reporter tags at predefined chromosomal positions. A crucial requirement for such versatile genome editing approaches is, however, the need to co-deliver in an effective, coordinated and non-cytotoxic manner all the required components into target cells. Here, adenoviral (AdV) and adeno-associated viral (AAV) vectors are investigated as delivery agents for, respectively, engineered CRISPR-Cas9 nucleases and donor DNA constructs prone to homologous recombination (HR) or homology-mediated end joining (HMEJ) processes. Specifically, canonical single-stranded and self-complementary double-stranded AAVs served as sources of ectopic HR and HMEJ substrates, whilst second- and third-generation AdVs provided for matched CRISPR-Cas9 nucleases. We report that combining single-stranded AAV delivery of HR donors with third-generation AdV transfer of CRISPR-Cas9 nucleases results in selection-free and precise whole transgene insertion in large fractions of target-cell populations (i.e. up to 93%) and disclose that programmable nuclease-induced chromosomal breaks promote AAV transduction. Finally, besides investigating relationships between distinct AAV structures and genome-editing performance endpoints, we further report that high-fidelity CRISPR-Cas9 nucleases are critical for mitigating off-target chromosomal insertion of defective AAV genomes known to be packaged in vector particles.
科研通智能强力驱动
Strongly Powered by AbleSci AI