离子液体
选择性
材料科学
四氟硼酸盐
复合数
吸附
复合材料
物理化学
有机化学
催化作用
化学
作者
Hilal Daglar,Hasan Can Gülbalkan,Nitasha Habib,Özce Durak,Alper Uzun,Seda Keskın
标识
DOI:10.1021/acsami.3c02130
摘要
Considering the existence of a large number and variety of metal-organic frameworks (MOFs) and ionic liquids (ILs), assessing the gas separation potential of all possible IL/MOF composites by purely experimental methods is not practical. In this work, we combined molecular simulations and machine learning (ML) algorithms to computationally design an IL/MOF composite. Molecular simulations were first performed to screen approximately 1000 different composites of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) with a large variety of MOFs for CO2 and N2 adsorption. The results of simulations were used to develop ML models that can accurately predict the adsorption and separation performances of [BMIM][BF4]/MOF composites. The most important features that affect the CO2/N2 selectivity of composites were extracted from ML and utilized to computationally generate an IL/MOF composite, [BMIM][BF4]/UiO-66, which was not present in the original material data set. This composite was finally synthesized, characterized, and tested for CO2/N2 separation. Experimentally measured CO2/N2 selectivity of the [BMIM][BF4]/UiO-66 composite matched well with the selectivity predicted by the ML model, and it was found to be comparable, if not higher than that of all previously synthesized [BMIM][BF4]/MOF composites reported in the literature. Our proposed approach of combining molecular simulations with ML models will be highly useful to accurately predict the CO2/N2 separation performances of any [BMIM][BF4]/MOF composite within seconds compared to the extensive time and effort requirements of purely experimental methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI