已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating Molecular Simulations with Machine Learning Guides in the Design and Synthesis of [BMIM][BF4]/MOF Composites for CO2/N2 Separation

离子液体 选择性 材料科学 四氟硼酸盐 复合数 吸附 复合材料 物理化学 有机化学 催化作用 化学
作者
Hilal Daglar,Hasan Can Gülbalkan,Nitasha Habib,Özce Durak,Alper Uzun,Seda Keskın
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (13): 17421-17431 被引量:33
标识
DOI:10.1021/acsami.3c02130
摘要

Considering the existence of a large number and variety of metal-organic frameworks (MOFs) and ionic liquids (ILs), assessing the gas separation potential of all possible IL/MOF composites by purely experimental methods is not practical. In this work, we combined molecular simulations and machine learning (ML) algorithms to computationally design an IL/MOF composite. Molecular simulations were first performed to screen approximately 1000 different composites of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) with a large variety of MOFs for CO2 and N2 adsorption. The results of simulations were used to develop ML models that can accurately predict the adsorption and separation performances of [BMIM][BF4]/MOF composites. The most important features that affect the CO2/N2 selectivity of composites were extracted from ML and utilized to computationally generate an IL/MOF composite, [BMIM][BF4]/UiO-66, which was not present in the original material data set. This composite was finally synthesized, characterized, and tested for CO2/N2 separation. Experimentally measured CO2/N2 selectivity of the [BMIM][BF4]/UiO-66 composite matched well with the selectivity predicted by the ML model, and it was found to be comparable, if not higher than that of all previously synthesized [BMIM][BF4]/MOF composites reported in the literature. Our proposed approach of combining molecular simulations with ML models will be highly useful to accurately predict the CO2/N2 separation performances of any [BMIM][BF4]/MOF composite within seconds compared to the extensive time and effort requirements of purely experimental methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Aug31完成签到 ,获得积分10
4秒前
茄茄女士完成签到 ,获得积分10
5秒前
大大怪完成签到 ,获得积分10
10秒前
14秒前
温暖的聪展完成签到 ,获得积分10
14秒前
wr完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
完成第一篇完成签到 ,获得积分10
18秒前
无限铸海发布了新的文献求助10
18秒前
结实的小土豆完成签到 ,获得积分10
22秒前
光亮的冰薇完成签到 ,获得积分10
25秒前
在水一方应助勤劳莹芝采纳,获得10
37秒前
orixero应助oyxz采纳,获得10
37秒前
HONG完成签到 ,获得积分10
38秒前
38秒前
Jasper应助科研通管家采纳,获得10
39秒前
木又应助科研通管家采纳,获得10
40秒前
SciGPT应助科研通管家采纳,获得10
40秒前
40秒前
Raven应助科研通管家采纳,获得10
40秒前
浮游应助科研通管家采纳,获得10
40秒前
哈基米德应助科研通管家采纳,获得10
40秒前
哈基米德应助科研通管家采纳,获得10
40秒前
40秒前
哈基米德应助科研通管家采纳,获得10
40秒前
哈基米德应助科研通管家采纳,获得25
40秒前
打打应助科研通管家采纳,获得10
40秒前
41秒前
彭于晏应助科研通管家采纳,获得10
41秒前
Criminology34应助科研通管家采纳,获得10
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
酷波er应助科研通管家采纳,获得10
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
xxfsx应助科研通管家采纳,获得10
41秒前
情怀应助科研通管家采纳,获得10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275