Integrating Molecular Simulations with Machine Learning Guides in the Design and Synthesis of [BMIM][BF4]/MOF Composites for CO2/N2 Separation

离子液体 选择性 材料科学 四氟硼酸盐 复合数 吸附 复合材料 物理化学 有机化学 催化作用 化学
作者
Hilal Daglar,Hasan Can Gülbalkan,Nitasha Habib,Özce Durak,Alper Uzun,Seda Keskın
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (13): 17421-17431 被引量:33
标识
DOI:10.1021/acsami.3c02130
摘要

Considering the existence of a large number and variety of metal-organic frameworks (MOFs) and ionic liquids (ILs), assessing the gas separation potential of all possible IL/MOF composites by purely experimental methods is not practical. In this work, we combined molecular simulations and machine learning (ML) algorithms to computationally design an IL/MOF composite. Molecular simulations were first performed to screen approximately 1000 different composites of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) with a large variety of MOFs for CO2 and N2 adsorption. The results of simulations were used to develop ML models that can accurately predict the adsorption and separation performances of [BMIM][BF4]/MOF composites. The most important features that affect the CO2/N2 selectivity of composites were extracted from ML and utilized to computationally generate an IL/MOF composite, [BMIM][BF4]/UiO-66, which was not present in the original material data set. This composite was finally synthesized, characterized, and tested for CO2/N2 separation. Experimentally measured CO2/N2 selectivity of the [BMIM][BF4]/UiO-66 composite matched well with the selectivity predicted by the ML model, and it was found to be comparable, if not higher than that of all previously synthesized [BMIM][BF4]/MOF composites reported in the literature. Our proposed approach of combining molecular simulations with ML models will be highly useful to accurately predict the CO2/N2 separation performances of any [BMIM][BF4]/MOF composite within seconds compared to the extensive time and effort requirements of purely experimental methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助mochou采纳,获得10
刚刚
2秒前
3秒前
葱饼完成签到 ,获得积分10
4秒前
开心木木发布了新的文献求助30
4秒前
lzr完成签到 ,获得积分10
4秒前
夏紊发布了新的文献求助10
4秒前
zjd完成签到,获得积分10
5秒前
梦云点灯完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
小于完成签到,获得积分10
9秒前
田心雨完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
正直从阳完成签到,获得积分10
10秒前
songjin发布了新的文献求助10
10秒前
科研通AI6.1应助张啦啦采纳,获得10
10秒前
11秒前
蒋丞发布了新的文献求助10
12秒前
华老五完成签到,获得积分10
12秒前
12秒前
zero完成签到 ,获得积分10
13秒前
13秒前
孤独发布了新的文献求助10
14秒前
豆芽完成签到 ,获得积分10
15秒前
Gandiva发布了新的文献求助10
16秒前
隐形曼青应助asd采纳,获得10
16秒前
lll发布了新的文献求助20
17秒前
XYZ完成签到,获得积分10
17秒前
能干的小蘑菇完成签到,获得积分10
19秒前
汉堡包应助晨纯采纳,获得10
20秒前
张雨兴发布了新的文献求助10
20秒前
21秒前
蒋丞完成签到,获得积分20
21秒前
liberty发布了新的文献求助10
22秒前
23秒前
文献求助发布了新的文献求助10
24秒前
大鱼完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770601
求助须知:如何正确求助?哪些是违规求助? 5586403
关于积分的说明 15424708
捐赠科研通 4904120
什么是DOI,文献DOI怎么找? 2638520
邀请新用户注册赠送积分活动 1586415
关于科研通互助平台的介绍 1541488