清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrating Molecular Simulations with Machine Learning Guides in the Design and Synthesis of [BMIM][BF4]/MOF Composites for CO2/N2 Separation

离子液体 选择性 材料科学 四氟硼酸盐 复合数 吸附 复合材料 物理化学 有机化学 催化作用 化学
作者
Hilal Daglar,Hasan Can Gülbalkan,Nitasha Habib,Özce Durak,Alper Uzun,Seda Keskın
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (13): 17421-17431 被引量:21
标识
DOI:10.1021/acsami.3c02130
摘要

Considering the existence of a large number and variety of metal-organic frameworks (MOFs) and ionic liquids (ILs), assessing the gas separation potential of all possible IL/MOF composites by purely experimental methods is not practical. In this work, we combined molecular simulations and machine learning (ML) algorithms to computationally design an IL/MOF composite. Molecular simulations were first performed to screen approximately 1000 different composites of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) with a large variety of MOFs for CO2 and N2 adsorption. The results of simulations were used to develop ML models that can accurately predict the adsorption and separation performances of [BMIM][BF4]/MOF composites. The most important features that affect the CO2/N2 selectivity of composites were extracted from ML and utilized to computationally generate an IL/MOF composite, [BMIM][BF4]/UiO-66, which was not present in the original material data set. This composite was finally synthesized, characterized, and tested for CO2/N2 separation. Experimentally measured CO2/N2 selectivity of the [BMIM][BF4]/UiO-66 composite matched well with the selectivity predicted by the ML model, and it was found to be comparable, if not higher than that of all previously synthesized [BMIM][BF4]/MOF composites reported in the literature. Our proposed approach of combining molecular simulations with ML models will be highly useful to accurately predict the CO2/N2 separation performances of any [BMIM][BF4]/MOF composite within seconds compared to the extensive time and effort requirements of purely experimental methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
3秒前
21秒前
25秒前
Wang发布了新的文献求助10
27秒前
57秒前
小梦发布了新的文献求助20
1分钟前
小马甲应助小梦采纳,获得10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
2分钟前
不晓天发布了新的文献求助10
2分钟前
香蕉觅云应助bxb采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
小梦发布了新的文献求助10
2分钟前
yy发布了新的文献求助10
2分钟前
bxb发布了新的文献求助10
2分钟前
bxb完成签到,获得积分10
2分钟前
轻松小张完成签到,获得积分0
2分钟前
kean1943完成签到,获得积分10
2分钟前
欢喜的跳跳糖完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
张小陈完成签到 ,获得积分10
2分钟前
2分钟前
Ava应助小梦采纳,获得10
3分钟前
zzhui完成签到,获得积分10
3分钟前
3分钟前
安琪琪完成签到 ,获得积分10
3分钟前
3分钟前
拾石子完成签到 ,获得积分10
3分钟前
3分钟前
closer完成签到 ,获得积分10
3分钟前
Raul完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
naczx完成签到,获得积分0
4分钟前
ww完成签到,获得积分10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957082
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111267
捐赠科研通 3234174
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264