Integrating Molecular Simulations with Machine Learning Guides in the Design and Synthesis of [BMIM][BF4]/MOF Composites for CO2/N2 Separation

离子液体 选择性 材料科学 四氟硼酸盐 复合数 吸附 复合材料 物理化学 有机化学 催化作用 化学
作者
Hilal Daglar,Hasan Can Gülbalkan,Nitasha Habib,Özce Durak,Alper Uzun,Seda Keskın
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (13): 17421-17431 被引量:21
标识
DOI:10.1021/acsami.3c02130
摘要

Considering the existence of a large number and variety of metal-organic frameworks (MOFs) and ionic liquids (ILs), assessing the gas separation potential of all possible IL/MOF composites by purely experimental methods is not practical. In this work, we combined molecular simulations and machine learning (ML) algorithms to computationally design an IL/MOF composite. Molecular simulations were first performed to screen approximately 1000 different composites of 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) with a large variety of MOFs for CO2 and N2 adsorption. The results of simulations were used to develop ML models that can accurately predict the adsorption and separation performances of [BMIM][BF4]/MOF composites. The most important features that affect the CO2/N2 selectivity of composites were extracted from ML and utilized to computationally generate an IL/MOF composite, [BMIM][BF4]/UiO-66, which was not present in the original material data set. This composite was finally synthesized, characterized, and tested for CO2/N2 separation. Experimentally measured CO2/N2 selectivity of the [BMIM][BF4]/UiO-66 composite matched well with the selectivity predicted by the ML model, and it was found to be comparable, if not higher than that of all previously synthesized [BMIM][BF4]/MOF composites reported in the literature. Our proposed approach of combining molecular simulations with ML models will be highly useful to accurately predict the CO2/N2 separation performances of any [BMIM][BF4]/MOF composite within seconds compared to the extensive time and effort requirements of purely experimental methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaofei666应助爱听歌的丹琴采纳,获得20
1秒前
嘿嘿丶完成签到 ,获得积分10
1秒前
漂亮念真发布了新的文献求助10
2秒前
2秒前
王博士完成签到,获得积分10
2秒前
领导范儿应助小盘子采纳,获得10
2秒前
4秒前
6秒前
小猴发布了新的文献求助10
6秒前
白华苍松发布了新的文献求助10
7秒前
千瓦时醒醒完成签到,获得积分10
9秒前
11秒前
12秒前
b3lyp完成签到,获得积分20
12秒前
大个应助小狐狸采纳,获得30
13秒前
糊涂的炳发布了新的文献求助10
13秒前
甜蜜的笑白完成签到,获得积分10
14秒前
hgq完成签到,获得积分20
14秒前
b3lyp发布了新的文献求助10
15秒前
喵喵喵完成签到,获得积分10
16秒前
追寻宛海完成签到 ,获得积分10
16秒前
Hitacl发布了新的文献求助10
17秒前
完美世界应助IAMXC采纳,获得10
17秒前
99giddens应助木筝丹青采纳,获得10
18秒前
LArry完成签到,获得积分10
18秒前
我是老大应助小猴采纳,获得10
19秒前
19秒前
科研通AI2S应助理想三寻采纳,获得10
19秒前
20秒前
lincool发布了新的文献求助10
21秒前
ke科研小白完成签到,获得积分10
23秒前
张培培完成签到,获得积分20
24秒前
24秒前
Hitacl完成签到,获得积分10
27秒前
占那个完成签到 ,获得积分10
27秒前
27秒前
陈宛婷发布了新的文献求助100
27秒前
28秒前
英姑应助翟如风采纳,获得10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012