亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-Based Rainfall Prediction Using Cloud Image Analysis

云计算 计算机科学 卷积神经网络 预处理器 图像(数学) 人工智能 均方误差 深度学习 模式识别(心理学) 数据挖掘 遥感 数学 统计 地质学 操作系统
作者
Jongyun Byun,Changhyun Jun,Jinwon Kim,Jaehoon Cha,Roya Narimani
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:7
标识
DOI:10.1109/tgrs.2023.3263872
摘要

This study presents a new research direction for predicting rainfall amount using cloud image data. Herein, we employ a convolutional neural networks (CNNs) to develop an image-value model from cloud image data collected from 20 May 2020 to 24 October 2020 using IoT sensors installed at two research locations in Seoul, Republic of Korea. First, we refine the dataset using data preprocessing in three steps: 1. day/night discrimination, 2. ratio adjustment, and 3. image augmentation. Second, we construct a binary classification model using one-hot encoding for the existence of rainfall. This reduces no-rain data instances and increases model performance, thereby enabling the model to extract image features. Finally, we develop a CNN-based image-value model for rainfall prediction with a well-organized model configuration. Rainfall existence results derived from the binary classification model used for model input as preprocessed cloud image data. Proposed rainfall prediction model exhibited 85.59% accuracy on cloud images with an average mean squared error (MSE) of 3.05 for observation data under 3 mm/h. In particular, single application of the function that divides boolean input by the standard deviation of the dataset within each characteristic resulted in a 17% increase in predicted rainfall accuracy. To the best of our knowledge, this is the first study to train CNN model to predict value (rainfall) with matched image data (cloud), which could be denoted as CNN-based image-value model. Notably, the proposed model can be further extended into other image datasets, including rain streaks with various backgrounds under different climatic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Little2发布了新的文献求助10
6秒前
9秒前
9秒前
29秒前
忧郁的香魔完成签到,获得积分10
40秒前
43秒前
茜茜发布了新的文献求助10
48秒前
50秒前
无情的匪完成签到 ,获得积分10
54秒前
55秒前
ADDDD发布了新的文献求助10
59秒前
李健应助ADDDD采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
金一完成签到 ,获得积分10
1分钟前
老才完成签到 ,获得积分10
1分钟前
勤劳的小吴完成签到,获得积分10
1分钟前
呱呱乐关注了科研通微信公众号
1分钟前
KSung完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
呱呱乐发布了新的文献求助10
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Ganlou应助liuyun采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
eschew完成签到,获得积分10
3分钟前
poki完成签到 ,获得积分10
3分钟前
洛洛大方应助吴昊东采纳,获得50
3分钟前
呱呱乐完成签到,获得积分10
3分钟前
3分钟前
面包呀发布了新的文献求助10
3分钟前
Amikacin完成签到,获得积分10
3分钟前
3分钟前
33完成签到,获得积分10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307352
求助须知:如何正确求助?哪些是违规求助? 2941006
关于积分的说明 8500142
捐赠科研通 2615329
什么是DOI,文献DOI怎么找? 1428830
科研通“疑难数据库(出版商)”最低求助积分说明 663581
邀请新用户注册赠送积分活动 648410