O-GlyThr: Prediction of human O-linked threonine glycosites using multi-feature fusion

苏氨酸 计算生物学 交叉验证 蛋白质结构预测 计算机科学 分类器(UML) 人工智能 生物 蛋白质结构 遗传学 生物化学 磷酸化 丝氨酸
作者
Hua Tang,Qiang Tang,Qian Zhang,Pengmian Feng
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:242: 124761-124761 被引量:2
标识
DOI:10.1016/j.ijbiomac.2023.124761
摘要

O-linked glycosylation is one of the most complex post-translational modifications (PTM) of human proteins modulating various cellular metabolic and signaling pathways. Unlike N-glycosylation, the O-glycosylation has non-specific sequence features and unstable glycan core structure, which makes identification of O-glycosites more challenging either by experimental or computational methods. Biochemical experiments to identify O-glycosites in batches are technically and economically demanding. Therefore, development of computation-based methods is greatly warranted. This study constructed a prediction model based on feature fusion for O-glycosites linked to the threonine residues in Homo sapiens. In the training model, we collected and sorted out high-quality human protein data with O-linked threonine glycosites. Seven feature coding methods were fused to represent the sample sequence. By comparison of different algorithms, random forest was selected as the final classifier to construct the classification model. Through 5-fold cross-validation, the proposed model, namely O-GlyThr, performed satisfactorily on both training set (AUC: 0.9308) and independent validation dataset (AUC: 0.9323). Compared with previously published predictors, O-GlyThr achieved the highest ACC of 0.8475 on the independent test dataset. These results demonstrated the high competency of our predictor in identifying O-glycosites on threonine residues. Furthermore, a user-friendly webserver named O-GlyThr (http://cbcb.cdutcm.edu.cn/O-GlyThr/) was developed to assist glycobiologists in the research associated with glycosylation structure and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐发布了新的文献求助10
刚刚
希望天下0贩的0应助Neinei采纳,获得10
1秒前
09285号完成签到 ,获得积分10
1秒前
2秒前
安详可燕完成签到,获得积分20
3秒前
陈一一完成签到 ,获得积分10
3秒前
4秒前
小马甲应助曾经二娘采纳,获得10
6秒前
6秒前
7秒前
9秒前
调研昵称发布了新的文献求助10
10秒前
何博士发布了新的文献求助10
13秒前
14秒前
xiao完成签到,获得积分10
15秒前
biubiudiu发布了新的文献求助20
15秒前
华仔应助科研通管家采纳,获得10
15秒前
笨笨石头应助科研通管家采纳,获得10
15秒前
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
17秒前
fxunq完成签到,获得积分10
18秒前
arabes发布了新的文献求助10
20秒前
JamesPei应助biubiudiu采纳,获得10
22秒前
搜集达人应助biubiudiu采纳,获得10
22秒前
不配.应助biubiudiu采纳,获得20
22秒前
阿嘎普莱特完成签到,获得积分10
23秒前
23秒前
李健的小迷弟应助ClarkLee采纳,获得30
23秒前
小金星星完成签到 ,获得积分10
25秒前
大模型应助豆皮采纳,获得10
25秒前
25秒前
25秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155908
求助须知:如何正确求助?哪些是违规求助? 2807136
关于积分的说明 7871997
捐赠科研通 2465497
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905