Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data

计算机科学 集合(抽象数据类型) 缺少数据 人工智能 概率逻辑 编码器 过程(计算) 数据挖掘 数据集 机器学习 操作系统 程序设计语言
作者
Lei Chen,Yuan Xu,Qunxiong Zhu,Yan‐Lin He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3564-3575 被引量:12
标识
DOI:10.1109/tase.2023.3281336
摘要

Variational auto-encoders (VAEs) have been widely used in soft sensing due to their ability to provide a probabilistic description of the hidden space. However, VAEs are static models that do not consider process dynamics, which can limit the ability of VAEs to accurately model complex industrial processes. To tackle this problem, this paper proposes a model called adaptive multi-head self-attention based supervised VAE (AMSA-SVAE). In AMSA-SVAE, an adaptive multi-head self-attention mechanism (AMSA) is proposed based on the multi-head self-attention mechanism (MSA). AMSA can dynamically extract different attention information depending on specific tasks. By adjusting the attention weights based on the input sequence, AMSA allows for more accurate and efficient modeling of complex industrial processes. Then, AMSA is used as the encoder and decoder of SVAE for soft sensing. Furthermore, with the data generation capabilities of VAE, an adaptive multi-head self-attention based VAE (AMSA-VAE) framework is proposed to address the issue of missing data. The AMSA-VAE is used to dynamically fill in missing data, thereby extending the capabilities of AMSA-SVAE. Finally, the performance of AMSA-SVAE is verified by a set of real industrial data, and the ability of AMSA-VAE framework is demonstrated by simulating different degrees of data missing rates. By combining the dynamic modeling capabilities of AMSA-SVAE with the data generation capabilities of AMSA-VAE, the proposed approach provides a robust solution to the challenges of incomplete data in soft sensing. Note to Practitioners — Soft sensors are widely used to measure key parameters in industrial processes, but missing values in the data are common due to sensor failures or transmission signal interference. This poses a significant challenge for traditional soft sensors, which require complete data to accurately model. Meanwhile, the dynamic nature of industrial process data further complicates the modeling process. To solve these challenges, this paper proposes an AMSA-SVAE model for soft sensing and an AMSA-VAE framework for filling in the missing values in the data, thereby extending the capabilities of AMSA-SVAE to handle missing data. When facing a dataset with missing values, AMSA-VAE framework is first used to fill in the missing values before the filled complete data is fed into AMSA-SVAE for modeling. Finally, the proposed approaches are evaluated through two sets of experiments using a real industrial dataset, showing the excellent performance of AMSA-SVAE and AMSA-VAE framework in modeling dynamic industrial process data and addressing the missing data problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助诚心的以寒采纳,获得10
刚刚
2秒前
3秒前
5秒前
集典完成签到 ,获得积分10
7秒前
共享精神应助MoriZhang采纳,获得10
8秒前
lm发布了新的文献求助10
8秒前
8秒前
泡棉胶发布了新的文献求助10
9秒前
Akim应助张利双采纳,获得10
10秒前
诚心的以寒完成签到,获得积分10
11秒前
11秒前
11秒前
痴情的小蕊完成签到,获得积分10
12秒前
bkagyin应助翻羽采纳,获得10
13秒前
13秒前
黄贰叁发布了新的文献求助10
14秒前
14秒前
15秒前
李li发布了新的文献求助10
16秒前
完美世界应助研友_841e4L采纳,获得10
16秒前
16秒前
普契尼发布了新的文献求助10
17秒前
星辰大海应助Lz采纳,获得10
20秒前
大脑袋应助Lucas采纳,获得30
21秒前
我是老大应助司书存采纳,获得10
22秒前
25秒前
小蘑菇应助MoriZhang采纳,获得10
25秒前
lmh完成签到,获得积分10
25秒前
ED应助普契尼采纳,获得10
26秒前
完美世界应助泡棉胶采纳,获得10
28秒前
RuoYinLee发布了新的文献求助10
28秒前
bingbing发布了新的文献求助10
28秒前
28秒前
29秒前
30秒前
射天狼发布了新的文献求助10
30秒前
30秒前
WANG完成签到,获得积分10
32秒前
彭于晏应助顺顺顺顺采纳,获得10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962822
求助须知:如何正确求助?哪些是违规求助? 3508736
关于积分的说明 11142697
捐赠科研通 3241520
什么是DOI,文献DOI怎么找? 1791604
邀请新用户注册赠送积分活动 872987
科研通“疑难数据库(出版商)”最低求助积分说明 803517