Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data

计算机科学 集合(抽象数据类型) 缺少数据 人工智能 概率逻辑 编码器 过程(计算) 数据挖掘 数据集 机器学习 程序设计语言 操作系统
作者
Lei Chen,Yuan Xu,Qunxiong Zhu,Yan‐Lin He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3564-3575 被引量:12
标识
DOI:10.1109/tase.2023.3281336
摘要

Variational auto-encoders (VAEs) have been widely used in soft sensing due to their ability to provide a probabilistic description of the hidden space. However, VAEs are static models that do not consider process dynamics, which can limit the ability of VAEs to accurately model complex industrial processes. To tackle this problem, this paper proposes a model called adaptive multi-head self-attention based supervised VAE (AMSA-SVAE). In AMSA-SVAE, an adaptive multi-head self-attention mechanism (AMSA) is proposed based on the multi-head self-attention mechanism (MSA). AMSA can dynamically extract different attention information depending on specific tasks. By adjusting the attention weights based on the input sequence, AMSA allows for more accurate and efficient modeling of complex industrial processes. Then, AMSA is used as the encoder and decoder of SVAE for soft sensing. Furthermore, with the data generation capabilities of VAE, an adaptive multi-head self-attention based VAE (AMSA-VAE) framework is proposed to address the issue of missing data. The AMSA-VAE is used to dynamically fill in missing data, thereby extending the capabilities of AMSA-SVAE. Finally, the performance of AMSA-SVAE is verified by a set of real industrial data, and the ability of AMSA-VAE framework is demonstrated by simulating different degrees of data missing rates. By combining the dynamic modeling capabilities of AMSA-SVAE with the data generation capabilities of AMSA-VAE, the proposed approach provides a robust solution to the challenges of incomplete data in soft sensing. Note to Practitioners — Soft sensors are widely used to measure key parameters in industrial processes, but missing values in the data are common due to sensor failures or transmission signal interference. This poses a significant challenge for traditional soft sensors, which require complete data to accurately model. Meanwhile, the dynamic nature of industrial process data further complicates the modeling process. To solve these challenges, this paper proposes an AMSA-SVAE model for soft sensing and an AMSA-VAE framework for filling in the missing values in the data, thereby extending the capabilities of AMSA-SVAE to handle missing data. When facing a dataset with missing values, AMSA-VAE framework is first used to fill in the missing values before the filled complete data is fed into AMSA-SVAE for modeling. Finally, the proposed approaches are evaluated through two sets of experiments using a real industrial dataset, showing the excellent performance of AMSA-SVAE and AMSA-VAE framework in modeling dynamic industrial process data and addressing the missing data problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小葛发布了新的文献求助10
刚刚
Kevin发布了新的文献求助20
1秒前
lzx完成签到,获得积分10
1秒前
ZIS发布了新的文献求助10
1秒前
吴帅发布了新的文献求助10
1秒前
1秒前
1秒前
keyanrubbish发布了新的文献求助10
1秒前
tangshijun完成签到,获得积分10
2秒前
2秒前
2秒前
子车茗应助sober采纳,获得20
2秒前
2秒前
无疾而终完成签到,获得积分10
2秒前
Tdj完成签到,获得积分10
2秒前
白苹果完成签到 ,获得积分10
3秒前
天行完成签到,获得积分10
3秒前
爆米花应助666采纳,获得10
3秒前
4秒前
potatozhou完成签到,获得积分10
4秒前
4秒前
Harssi发布了新的文献求助10
4秒前
yunyii发布了新的文献求助10
4秒前
4秒前
领导范儿应助Jerrie采纳,获得10
5秒前
Aurora发布了新的文献求助10
5秒前
万能图书馆应助惠香香的采纳,获得10
5秒前
共享精神应助微笑的弧度采纳,获得10
5秒前
诚心寄灵完成签到,获得积分20
6秒前
Leon发布了新的文献求助10
6秒前
大军门诊完成签到,获得积分10
6秒前
小葛完成签到,获得积分10
6秒前
6秒前
小马甲应助优美猕猴桃采纳,获得10
6秒前
7秒前
花灯王子发布了新的文献求助10
7秒前
吴帅完成签到,获得积分10
8秒前
华仔应助Te采纳,获得10
8秒前
8秒前
慕青应助海大彭于晏采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836