Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data

计算机科学 集合(抽象数据类型) 缺少数据 人工智能 概率逻辑 编码器 过程(计算) 数据挖掘 数据集 机器学习 程序设计语言 操作系统
作者
Lei Chen,Yuan Xu,Qunxiong Zhu,Yan‐Lin He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3564-3575 被引量:12
标识
DOI:10.1109/tase.2023.3281336
摘要

Variational auto-encoders (VAEs) have been widely used in soft sensing due to their ability to provide a probabilistic description of the hidden space. However, VAEs are static models that do not consider process dynamics, which can limit the ability of VAEs to accurately model complex industrial processes. To tackle this problem, this paper proposes a model called adaptive multi-head self-attention based supervised VAE (AMSA-SVAE). In AMSA-SVAE, an adaptive multi-head self-attention mechanism (AMSA) is proposed based on the multi-head self-attention mechanism (MSA). AMSA can dynamically extract different attention information depending on specific tasks. By adjusting the attention weights based on the input sequence, AMSA allows for more accurate and efficient modeling of complex industrial processes. Then, AMSA is used as the encoder and decoder of SVAE for soft sensing. Furthermore, with the data generation capabilities of VAE, an adaptive multi-head self-attention based VAE (AMSA-VAE) framework is proposed to address the issue of missing data. The AMSA-VAE is used to dynamically fill in missing data, thereby extending the capabilities of AMSA-SVAE. Finally, the performance of AMSA-SVAE is verified by a set of real industrial data, and the ability of AMSA-VAE framework is demonstrated by simulating different degrees of data missing rates. By combining the dynamic modeling capabilities of AMSA-SVAE with the data generation capabilities of AMSA-VAE, the proposed approach provides a robust solution to the challenges of incomplete data in soft sensing. Note to Practitioners — Soft sensors are widely used to measure key parameters in industrial processes, but missing values in the data are common due to sensor failures or transmission signal interference. This poses a significant challenge for traditional soft sensors, which require complete data to accurately model. Meanwhile, the dynamic nature of industrial process data further complicates the modeling process. To solve these challenges, this paper proposes an AMSA-SVAE model for soft sensing and an AMSA-VAE framework for filling in the missing values in the data, thereby extending the capabilities of AMSA-SVAE to handle missing data. When facing a dataset with missing values, AMSA-VAE framework is first used to fill in the missing values before the filled complete data is fed into AMSA-SVAE for modeling. Finally, the proposed approaches are evaluated through two sets of experiments using a real industrial dataset, showing the excellent performance of AMSA-SVAE and AMSA-VAE framework in modeling dynamic industrial process data and addressing the missing data problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到,获得积分10
1秒前
alvin完成签到,获得积分10
1秒前
Z1026完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
万能图书馆应助botion采纳,获得10
1秒前
舒心健柏完成签到,获得积分10
2秒前
2秒前
李可乐发布了新的文献求助10
2秒前
科研辣椒完成签到,获得积分10
2秒前
鳗鱼衣完成签到 ,获得积分10
2秒前
luyunxing完成签到,获得积分10
2秒前
2秒前
zxt完成签到,获得积分10
2秒前
科研通AI6应助孤独的猎手采纳,获得10
3秒前
Yummy完成签到,获得积分10
4秒前
Annnnnn完成签到,获得积分10
4秒前
echo完成签到,获得积分10
4秒前
yibaozhangfa完成签到,获得积分10
6秒前
11发布了新的文献求助30
6秒前
肝不动的牛马完成签到,获得积分10
6秒前
ding应助ruqinmq采纳,获得10
6秒前
桐桐应助Kleen采纳,获得10
6秒前
maoyi发布了新的文献求助10
6秒前
小luc发布了新的文献求助10
7秒前
李瑶函完成签到,获得积分10
7秒前
AN完成签到,获得积分10
7秒前
baomingqiu完成签到 ,获得积分10
7秒前
15940203654完成签到 ,获得积分10
7秒前
斯文败类应助举个栗子8采纳,获得10
7秒前
adou完成签到,获得积分20
8秒前
bjyx完成签到 ,获得积分10
8秒前
ks完成签到,获得积分10
8秒前
追寻翩跹完成签到,获得积分10
8秒前
tigger发布了新的文献求助10
8秒前
du完成签到 ,获得积分10
9秒前
Attendre完成签到 ,获得积分10
9秒前
dida完成签到,获得积分10
10秒前
ler完成签到,获得积分20
10秒前
无语的沛春完成签到,获得积分10
10秒前
周周完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977