Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data

计算机科学 集合(抽象数据类型) 缺少数据 人工智能 概率逻辑 编码器 过程(计算) 数据挖掘 数据集 机器学习 操作系统 程序设计语言
作者
Lei Chen,Yuan Xu,Qunxiong Zhu,Yan‐Lin He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3564-3575 被引量:9
标识
DOI:10.1109/tase.2023.3281336
摘要

Variational auto-encoders (VAEs) have been widely used in soft sensing due to their ability to provide a probabilistic description of the hidden space. However, VAEs are static models that do not consider process dynamics, which can limit the ability of VAEs to accurately model complex industrial processes. To tackle this problem, this paper proposes a model called adaptive multi-head self-attention based supervised VAE (AMSA-SVAE). In AMSA-SVAE, an adaptive multi-head self-attention mechanism (AMSA) is proposed based on the multi-head self-attention mechanism (MSA). AMSA can dynamically extract different attention information depending on specific tasks. By adjusting the attention weights based on the input sequence, AMSA allows for more accurate and efficient modeling of complex industrial processes. Then, AMSA is used as the encoder and decoder of SVAE for soft sensing. Furthermore, with the data generation capabilities of VAE, an adaptive multi-head self-attention based VAE (AMSA-VAE) framework is proposed to address the issue of missing data. The AMSA-VAE is used to dynamically fill in missing data, thereby extending the capabilities of AMSA-SVAE. Finally, the performance of AMSA-SVAE is verified by a set of real industrial data, and the ability of AMSA-VAE framework is demonstrated by simulating different degrees of data missing rates. By combining the dynamic modeling capabilities of AMSA-SVAE with the data generation capabilities of AMSA-VAE, the proposed approach provides a robust solution to the challenges of incomplete data in soft sensing. Note to Practitioners — Soft sensors are widely used to measure key parameters in industrial processes, but missing values in the data are common due to sensor failures or transmission signal interference. This poses a significant challenge for traditional soft sensors, which require complete data to accurately model. Meanwhile, the dynamic nature of industrial process data further complicates the modeling process. To solve these challenges, this paper proposes an AMSA-SVAE model for soft sensing and an AMSA-VAE framework for filling in the missing values in the data, thereby extending the capabilities of AMSA-SVAE to handle missing data. When facing a dataset with missing values, AMSA-VAE framework is first used to fill in the missing values before the filled complete data is fed into AMSA-SVAE for modeling. Finally, the proposed approaches are evaluated through two sets of experiments using a real industrial dataset, showing the excellent performance of AMSA-SVAE and AMSA-VAE framework in modeling dynamic industrial process data and addressing the missing data problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耿强完成签到,获得积分10
刚刚
wanci应助dd采纳,获得10
1秒前
汉堡包应助cuihl123采纳,获得10
1秒前
李浓完成签到,获得积分10
1秒前
DreamMaker发布了新的文献求助10
1秒前
mao12wang完成签到,获得积分10
2秒前
2秒前
bdvdsrwteges发布了新的文献求助10
3秒前
如约而至发布了新的文献求助20
3秒前
纯真的莫茗完成签到,获得积分10
3秒前
彭于晏应助超11采纳,获得10
4秒前
4秒前
gavincsu发布了新的文献求助10
4秒前
KSGGS给KSGGS的求助进行了留言
4秒前
flow驳回了Aria应助
4秒前
lixiunan完成签到,获得积分10
4秒前
4秒前
dildil发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
边瑞明完成签到,获得积分10
7秒前
Wang发布了新的文献求助10
8秒前
Jenny应助拼搏思卉采纳,获得10
8秒前
8秒前
神勇的雅香应助不喝可乐采纳,获得10
8秒前
清脆的白开水完成签到,获得积分10
8秒前
Hello应助善良过客采纳,获得10
8秒前
现实的曼荷完成签到,获得积分10
8秒前
8秒前
9秒前
zyyyy完成签到,获得积分10
9秒前
dd完成签到,获得积分20
9秒前
9秒前
混子发布了新的文献求助10
9秒前
HYG完成签到,获得积分10
10秒前
二橦完成签到 ,获得积分10
10秒前
熊博士完成签到,获得积分10
11秒前
哲000发布了新的文献求助10
11秒前
丰富的世界完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759