Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data

计算机科学 集合(抽象数据类型) 缺少数据 人工智能 概率逻辑 编码器 过程(计算) 数据挖掘 数据集 机器学习 操作系统 程序设计语言
作者
Lei Chen,Yuan Xu,Qunxiong Zhu,Yan‐Lin He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3564-3575 被引量:9
标识
DOI:10.1109/tase.2023.3281336
摘要

Variational auto-encoders (VAEs) have been widely used in soft sensing due to their ability to provide a probabilistic description of the hidden space. However, VAEs are static models that do not consider process dynamics, which can limit the ability of VAEs to accurately model complex industrial processes. To tackle this problem, this paper proposes a model called adaptive multi-head self-attention based supervised VAE (AMSA-SVAE). In AMSA-SVAE, an adaptive multi-head self-attention mechanism (AMSA) is proposed based on the multi-head self-attention mechanism (MSA). AMSA can dynamically extract different attention information depending on specific tasks. By adjusting the attention weights based on the input sequence, AMSA allows for more accurate and efficient modeling of complex industrial processes. Then, AMSA is used as the encoder and decoder of SVAE for soft sensing. Furthermore, with the data generation capabilities of VAE, an adaptive multi-head self-attention based VAE (AMSA-VAE) framework is proposed to address the issue of missing data. The AMSA-VAE is used to dynamically fill in missing data, thereby extending the capabilities of AMSA-SVAE. Finally, the performance of AMSA-SVAE is verified by a set of real industrial data, and the ability of AMSA-VAE framework is demonstrated by simulating different degrees of data missing rates. By combining the dynamic modeling capabilities of AMSA-SVAE with the data generation capabilities of AMSA-VAE, the proposed approach provides a robust solution to the challenges of incomplete data in soft sensing. Note to Practitioners — Soft sensors are widely used to measure key parameters in industrial processes, but missing values in the data are common due to sensor failures or transmission signal interference. This poses a significant challenge for traditional soft sensors, which require complete data to accurately model. Meanwhile, the dynamic nature of industrial process data further complicates the modeling process. To solve these challenges, this paper proposes an AMSA-SVAE model for soft sensing and an AMSA-VAE framework for filling in the missing values in the data, thereby extending the capabilities of AMSA-SVAE to handle missing data. When facing a dataset with missing values, AMSA-VAE framework is first used to fill in the missing values before the filled complete data is fed into AMSA-SVAE for modeling. Finally, the proposed approaches are evaluated through two sets of experiments using a real industrial dataset, showing the excellent performance of AMSA-SVAE and AMSA-VAE framework in modeling dynamic industrial process data and addressing the missing data problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助kelven采纳,获得10
刚刚
Vivian完成签到,获得积分10
1秒前
2秒前
研友_LJblvL完成签到 ,获得积分10
3秒前
xjwang发布了新的文献求助10
3秒前
tcl1998完成签到,获得积分10
3秒前
Curry发布了新的文献求助10
3秒前
chcmuer完成签到,获得积分10
4秒前
刘闹闹完成签到 ,获得积分10
4秒前
耶耶完成签到,获得积分10
4秒前
小小小完成签到,获得积分10
4秒前
林小雨完成签到,获得积分10
5秒前
妮子要学习完成签到,获得积分10
5秒前
Siqi_He完成签到,获得积分10
5秒前
马喽完成签到,获得积分10
5秒前
5秒前
yoesyte完成签到,获得积分10
6秒前
朝霞完成签到,获得积分10
7秒前
厄尔尼诺完成签到,获得积分10
7秒前
啵叽一口完成签到 ,获得积分10
7秒前
一期一会完成签到,获得积分10
8秒前
HuaYu完成签到,获得积分10
9秒前
所所应助xjwang采纳,获得10
9秒前
lanlan完成签到,获得积分10
10秒前
11秒前
Ship完成签到,获得积分10
11秒前
帅气的祥完成签到,获得积分10
12秒前
天才发布了新的文献求助30
12秒前
英姑应助RONG采纳,获得10
13秒前
田様应助蓝胖子采纳,获得10
14秒前
动听芷完成签到 ,获得积分10
14秒前
SciGPT应助唠叨的傲薇采纳,获得10
15秒前
研友_ZAxj7n发布了新的文献求助10
15秒前
纯真的梦竹完成签到,获得积分10
15秒前
鲤鱼会赢完成签到,获得积分10
15秒前
cxlhzq完成签到,获得积分10
16秒前
lyh完成签到,获得积分10
16秒前
只能吃到7分饱完成签到,获得积分10
17秒前
sens完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303401
求助须知:如何正确求助?哪些是违规求助? 2937732
关于积分的说明 8483305
捐赠科研通 2611698
什么是DOI,文献DOI怎么找? 1426103
科研通“疑难数据库(出版商)”最低求助积分说明 662539
邀请新用户注册赠送积分活动 647035