Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data

计算机科学 集合(抽象数据类型) 缺少数据 人工智能 概率逻辑 编码器 过程(计算) 数据挖掘 数据集 机器学习 程序设计语言 操作系统
作者
Lei Chen,Yuan Xu,Qunxiong Zhu,Yan‐Lin He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3564-3575 被引量:40
标识
DOI:10.1109/tase.2023.3281336
摘要

Variational auto-encoders (VAEs) have been widely used in soft sensing due to their ability to provide a probabilistic description of the hidden space. However, VAEs are static models that do not consider process dynamics, which can limit the ability of VAEs to accurately model complex industrial processes. To tackle this problem, this paper proposes a model called adaptive multi-head self-attention based supervised VAE (AMSA-SVAE). In AMSA-SVAE, an adaptive multi-head self-attention mechanism (AMSA) is proposed based on the multi-head self-attention mechanism (MSA). AMSA can dynamically extract different attention information depending on specific tasks. By adjusting the attention weights based on the input sequence, AMSA allows for more accurate and efficient modeling of complex industrial processes. Then, AMSA is used as the encoder and decoder of SVAE for soft sensing. Furthermore, with the data generation capabilities of VAE, an adaptive multi-head self-attention based VAE (AMSA-VAE) framework is proposed to address the issue of missing data. The AMSA-VAE is used to dynamically fill in missing data, thereby extending the capabilities of AMSA-SVAE. Finally, the performance of AMSA-SVAE is verified by a set of real industrial data, and the ability of AMSA-VAE framework is demonstrated by simulating different degrees of data missing rates. By combining the dynamic modeling capabilities of AMSA-SVAE with the data generation capabilities of AMSA-VAE, the proposed approach provides a robust solution to the challenges of incomplete data in soft sensing. Note to Practitioners — Soft sensors are widely used to measure key parameters in industrial processes, but missing values in the data are common due to sensor failures or transmission signal interference. This poses a significant challenge for traditional soft sensors, which require complete data to accurately model. Meanwhile, the dynamic nature of industrial process data further complicates the modeling process. To solve these challenges, this paper proposes an AMSA-SVAE model for soft sensing and an AMSA-VAE framework for filling in the missing values in the data, thereby extending the capabilities of AMSA-SVAE to handle missing data. When facing a dataset with missing values, AMSA-VAE framework is first used to fill in the missing values before the filled complete data is fed into AMSA-SVAE for modeling. Finally, the proposed approaches are evaluated through two sets of experiments using a real industrial dataset, showing the excellent performance of AMSA-SVAE and AMSA-VAE framework in modeling dynamic industrial process data and addressing the missing data problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qhf完成签到 ,获得积分10
1秒前
wms完成签到,获得积分10
1秒前
阿吟发布了新的文献求助10
1秒前
1秒前
1秒前
wwl发布了新的文献求助10
1秒前
唠叨的逍遥完成签到,获得积分10
2秒前
jojo发布了新的文献求助10
2秒前
xzn1123重新开启了if文献应助
2秒前
芝士饼干完成签到 ,获得积分10
3秒前
小巧亦竹完成签到,获得积分10
3秒前
3秒前
wms发布了新的文献求助10
3秒前
SciGPT应助miu采纳,获得10
3秒前
爱你哦发布了新的文献求助10
3秒前
Yingqilin完成签到,获得积分10
4秒前
4秒前
俏皮的老三完成签到 ,获得积分10
5秒前
5秒前
shoanofna发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
雨雨完成签到,获得积分10
6秒前
aaa发布了新的文献求助10
6秒前
米糊发布了新的文献求助10
6秒前
Orange应助碧蓝靳采纳,获得10
6秒前
小驼发布了新的文献求助10
7秒前
7秒前
可乐完成签到,获得积分10
7秒前
斯文败类应助jiangnan采纳,获得10
7秒前
8秒前
8秒前
8秒前
彪yu完成签到,获得积分10
8秒前
满意的皮带完成签到,获得积分10
8秒前
glory0510发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665611
求助须知:如何正确求助?哪些是违规求助? 4877669
关于积分的说明 15114824
捐赠科研通 4824856
什么是DOI,文献DOI怎么找? 2582972
邀请新用户注册赠送积分活动 1536984
关于科研通互助平台的介绍 1495418