Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data

计算机科学 集合(抽象数据类型) 缺少数据 人工智能 概率逻辑 编码器 过程(计算) 数据挖掘 数据集 机器学习 操作系统 程序设计语言
作者
Lei Chen,Yuan Xu,Qunxiong Zhu,Yan‐Lin He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3564-3575 被引量:12
标识
DOI:10.1109/tase.2023.3281336
摘要

Variational auto-encoders (VAEs) have been widely used in soft sensing due to their ability to provide a probabilistic description of the hidden space. However, VAEs are static models that do not consider process dynamics, which can limit the ability of VAEs to accurately model complex industrial processes. To tackle this problem, this paper proposes a model called adaptive multi-head self-attention based supervised VAE (AMSA-SVAE). In AMSA-SVAE, an adaptive multi-head self-attention mechanism (AMSA) is proposed based on the multi-head self-attention mechanism (MSA). AMSA can dynamically extract different attention information depending on specific tasks. By adjusting the attention weights based on the input sequence, AMSA allows for more accurate and efficient modeling of complex industrial processes. Then, AMSA is used as the encoder and decoder of SVAE for soft sensing. Furthermore, with the data generation capabilities of VAE, an adaptive multi-head self-attention based VAE (AMSA-VAE) framework is proposed to address the issue of missing data. The AMSA-VAE is used to dynamically fill in missing data, thereby extending the capabilities of AMSA-SVAE. Finally, the performance of AMSA-SVAE is verified by a set of real industrial data, and the ability of AMSA-VAE framework is demonstrated by simulating different degrees of data missing rates. By combining the dynamic modeling capabilities of AMSA-SVAE with the data generation capabilities of AMSA-VAE, the proposed approach provides a robust solution to the challenges of incomplete data in soft sensing. Note to Practitioners — Soft sensors are widely used to measure key parameters in industrial processes, but missing values in the data are common due to sensor failures or transmission signal interference. This poses a significant challenge for traditional soft sensors, which require complete data to accurately model. Meanwhile, the dynamic nature of industrial process data further complicates the modeling process. To solve these challenges, this paper proposes an AMSA-SVAE model for soft sensing and an AMSA-VAE framework for filling in the missing values in the data, thereby extending the capabilities of AMSA-SVAE to handle missing data. When facing a dataset with missing values, AMSA-VAE framework is first used to fill in the missing values before the filled complete data is fed into AMSA-SVAE for modeling. Finally, the proposed approaches are evaluated through two sets of experiments using a real industrial dataset, showing the excellent performance of AMSA-SVAE and AMSA-VAE framework in modeling dynamic industrial process data and addressing the missing data problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古果发布了新的文献求助100
1秒前
D调的华丽发布了新的文献求助10
1秒前
猕猴桃完成签到 ,获得积分10
1秒前
小荷完成签到,获得积分10
1秒前
高CA完成签到,获得积分10
1秒前
liuhll完成签到,获得积分10
1秒前
小蘑材完成签到,获得积分10
1秒前
blueming完成签到,获得积分10
3秒前
Hidden完成签到,获得积分10
3秒前
zhaoli发布了新的文献求助10
3秒前
adou完成签到,获得积分10
4秒前
隐形的代梅完成签到,获得积分10
4秒前
多多完成签到,获得积分10
4秒前
可爱的函函应助小李采纳,获得10
4秒前
ll完成签到,获得积分10
4秒前
李健应助SASI采纳,获得10
4秒前
文静的从菡完成签到,获得积分10
5秒前
vivy完成签到 ,获得积分10
5秒前
Srishti完成签到,获得积分10
6秒前
huahua发布了新的文献求助10
6秒前
6秒前
夏之茗完成签到,获得积分10
6秒前
Carlo完成签到,获得积分10
6秒前
6秒前
万能的翔王完成签到,获得积分10
6秒前
领导范儿应助lxy采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
自信的竹员外完成签到,获得积分10
9秒前
zxy完成签到,获得积分10
10秒前
10秒前
852应助adou采纳,获得10
10秒前
111发布了新的文献求助10
11秒前
Shi完成签到,获得积分10
11秒前
rong_w发布了新的文献求助10
11秒前
贤惠的一刀完成签到 ,获得积分10
12秒前
豆子完成签到,获得积分10
13秒前
xcc完成签到,获得积分10
13秒前
凶狠的绿兰完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4902316
求助须知:如何正确求助?哪些是违规求助? 4181329
关于积分的说明 12980881
捐赠科研通 3946631
什么是DOI,文献DOI怎么找? 2164732
邀请新用户注册赠送积分活动 1182940
关于科研通互助平台的介绍 1089408