Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data

计算机科学 集合(抽象数据类型) 缺少数据 人工智能 概率逻辑 编码器 过程(计算) 数据挖掘 数据集 机器学习 操作系统 程序设计语言
作者
Lei Chen,Yuan Xu,Qunxiong Zhu,Yan‐Lin He
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 3564-3575 被引量:12
标识
DOI:10.1109/tase.2023.3281336
摘要

Variational auto-encoders (VAEs) have been widely used in soft sensing due to their ability to provide a probabilistic description of the hidden space. However, VAEs are static models that do not consider process dynamics, which can limit the ability of VAEs to accurately model complex industrial processes. To tackle this problem, this paper proposes a model called adaptive multi-head self-attention based supervised VAE (AMSA-SVAE). In AMSA-SVAE, an adaptive multi-head self-attention mechanism (AMSA) is proposed based on the multi-head self-attention mechanism (MSA). AMSA can dynamically extract different attention information depending on specific tasks. By adjusting the attention weights based on the input sequence, AMSA allows for more accurate and efficient modeling of complex industrial processes. Then, AMSA is used as the encoder and decoder of SVAE for soft sensing. Furthermore, with the data generation capabilities of VAE, an adaptive multi-head self-attention based VAE (AMSA-VAE) framework is proposed to address the issue of missing data. The AMSA-VAE is used to dynamically fill in missing data, thereby extending the capabilities of AMSA-SVAE. Finally, the performance of AMSA-SVAE is verified by a set of real industrial data, and the ability of AMSA-VAE framework is demonstrated by simulating different degrees of data missing rates. By combining the dynamic modeling capabilities of AMSA-SVAE with the data generation capabilities of AMSA-VAE, the proposed approach provides a robust solution to the challenges of incomplete data in soft sensing. Note to Practitioners — Soft sensors are widely used to measure key parameters in industrial processes, but missing values in the data are common due to sensor failures or transmission signal interference. This poses a significant challenge for traditional soft sensors, which require complete data to accurately model. Meanwhile, the dynamic nature of industrial process data further complicates the modeling process. To solve these challenges, this paper proposes an AMSA-SVAE model for soft sensing and an AMSA-VAE framework for filling in the missing values in the data, thereby extending the capabilities of AMSA-SVAE to handle missing data. When facing a dataset with missing values, AMSA-VAE framework is first used to fill in the missing values before the filled complete data is fed into AMSA-SVAE for modeling. Finally, the proposed approaches are evaluated through two sets of experiments using a real industrial dataset, showing the excellent performance of AMSA-SVAE and AMSA-VAE framework in modeling dynamic industrial process data and addressing the missing data problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容向真完成签到,获得积分10
1秒前
梁堂博发布了新的文献求助10
2秒前
5秒前
听话的延恶完成签到 ,获得积分10
7秒前
懵懂的枫叶完成签到,获得积分10
8秒前
9秒前
鲤鱼青雪完成签到,获得积分10
9秒前
11秒前
汉堡包应助春风明月采纳,获得30
12秒前
16秒前
狗屁大侠发布了新的文献求助10
16秒前
愤怒的翅膀完成签到,获得积分10
18秒前
19秒前
芝芝莓莓完成签到 ,获得积分10
19秒前
keyaner发布了新的文献求助10
20秒前
OuO完成签到,获得积分10
21秒前
23秒前
阿三猫i完成签到 ,获得积分10
24秒前
有魅力的白玉完成签到 ,获得积分10
24秒前
cocobear完成签到 ,获得积分10
24秒前
25秒前
四叶草完成签到 ,获得积分10
25秒前
keyaner完成签到,获得积分10
26秒前
霸气鞯完成签到 ,获得积分10
26秒前
遇见完成签到 ,获得积分10
28秒前
爆米花应助初次见面采纳,获得10
31秒前
Migrol完成签到,获得积分10
31秒前
yqt完成签到,获得积分10
32秒前
三杠完成签到,获得积分10
33秒前
狗屁大侠完成签到,获得积分10
33秒前
COCO完成签到 ,获得积分10
34秒前
34秒前
Diego完成签到,获得积分10
35秒前
35秒前
欢喜板凳完成签到 ,获得积分10
35秒前
甜甜的又蓝完成签到 ,获得积分10
36秒前
秦奎完成签到,获得积分10
38秒前
天天快乐应助lpp采纳,获得10
39秒前
40秒前
充电宝应助盛施霏采纳,获得10
40秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378722
求助须知:如何正确求助?哪些是违规求助? 4503127
关于积分的说明 14015166
捐赠科研通 4411843
什么是DOI,文献DOI怎么找? 2423519
邀请新用户注册赠送积分活动 1416462
关于科研通互助平台的介绍 1393901