Meso-scale low-cycle fatigue damage of polycrystalline nickel-based alloy by crystal plasticity finite element method

材料科学 介观物理学 本构方程 可塑性 晶体塑性 微晶 合金 有限元法 变形(气象学) 打滑(空气动力学) 复合材料 结构工程 冶金 热力学 工程类 量子力学 物理
作者
Xu Long,Kainan Chong,Yutai Su,Chao Chang,Liguo Zhao
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:175: 107778-107778 被引量:97
标识
DOI:10.1016/j.ijfatigue.2023.107778
摘要

A mesoscopic constitutive model coupled with crystal plasticity (CP) and damage is established in this paper to investigate the plastic deformation and damage-induced degradation of polycrystalline materials under cyclic loading. Taking the nickel-based alloy as a representative material, the rationality and effectiveness of the proposed constitutive model are first verified through a single-element model containing one grain. On this basis, the stress and strain states and damage evolution of polycrystals under cyclic loading are comprehensively investigated. The constitutive parameters in the proposed model are calibrated against experimental results. It is discovered that the strength degradation of polycrystals under cyclic loading can be more precisely described by the CP constitutive model if the damage is taken into account. The simulation results demonstrate that there are significant differences in the initiation and activity degree of the slip systems inside the grains with various orientations, so that inhomogeneous plastic deformation occurs inside the polycrystal, which ultimately leads to the existence of different damage evolution processes in the internal regions of the materials. As an indicator parameter of fatigue damage, the cumulative plastic strain rises with the number of cycles, resulting in an increase of the damage variable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eve丶Paopaoxuan应助雨菡采纳,获得10
1秒前
2秒前
jjj发布了新的文献求助10
2秒前
caohuijun发布了新的文献求助20
2秒前
橘子发布了新的文献求助10
3秒前
3秒前
喜悦的灯完成签到,获得积分20
4秒前
anna1992发布了新的文献求助10
5秒前
香蕉发布了新的文献求助10
5秒前
赘婿应助mmmm采纳,获得10
6秒前
SGOM发布了新的文献求助10
6秒前
于是乎完成签到 ,获得积分10
6秒前
6秒前
aczqay应助风中的语堂采纳,获得20
8秒前
8秒前
Hello应助jjj采纳,获得10
9秒前
哈哈哈完成签到 ,获得积分10
9秒前
9秒前
慕子完成签到 ,获得积分10
10秒前
aczqay应助大气早晨采纳,获得20
10秒前
11秒前
11秒前
12秒前
彦成完成签到,获得积分10
13秒前
13秒前
13秒前
陈M雯发布了新的文献求助10
13秒前
嘟嘟嘟完成签到,获得积分20
14秒前
科目三应助艾斯库普斯采纳,获得10
15秒前
英俊的铭应助俊逸的代曼采纳,获得10
15秒前
halo发布了新的文献求助10
15秒前
Lizhe发布了新的文献求助10
15秒前
18秒前
bkagyin应助雨菡采纳,获得10
18秒前
19秒前
19秒前
19秒前
19秒前
19秒前
xmm完成签到,获得积分10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312