亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-sensor fusion-based prognostic model for systems with partially observable failure modes

计算机科学 可见的 残余物 人工智能 监督学习 失效模式及影响分析 数据挖掘 涡扇发动机 机器学习 可靠性工程 人工神经网络 工程类 算法 物理 量子力学 汽车工程
作者
Hui Wu,Yan‐Fu Li
出处
期刊:IISE transactions [Informa]
卷期号:56 (6): 624-637 被引量:6
标识
DOI:10.1080/24725854.2023.2222402
摘要

AbstractWith the rapid development of sensor and communication technology, multi-sensor data is available to monitor the degradation of complex systems and predict the failure modes. However, two huge challenges remain to be resolved: (i) how to predict the failure modes with limited failure mode labeled systems to alleviate the heavy dependence on expert experience; (ii) how to effectively fuze the useful information from the multi-sensor data to achieve an accurate estimation of the degradation status automatically. To address these issues, we propose a novel semi-supervised prognostic model for the systems with partially observable failure modes, where only a small fraction of the systems in the training set are known for their failure modes. First, we develop a graph-based semi-supervised learning method to extract features characterizing the failure modes. Then, we input these features as well as the multi-sensor streams into an elastic net functional regression model to predict the residual useful lifetime. The proposed model is validated by extensive simulation studies and a case study of aircraft turbofan engines available from the NASA repository.Keywords: Data fusionfailure modesfunctional principal components analysissemi-supervised learning AcknowledgmentsThe authors would like to thank the editors and referees for their many constructive and insightful comments, which have promoted significant improvements of this article.Additional informationFundingThe work described in this paper was supported by National Natural Science Foundation of China (No.71731008). Notes on contributorsHui WuHui Wu is an associate professor with the School of Economics and Management, Harbin Institute of Technology, Weihai, China. She received a BS degree in statistics from Shandong University, Jinan, China, in 2018, and a PhD degree in management science and engineering from Tsinghua University, Beijing, China, in 2022. Her current research focuses on developing statistical learning and artificial intelligence methods for large-scale complex system modeling, online monitoring, anomaly detection, and reliability analysis.Yan-Fu LiYan-Fu Li is a professor with Department of Industrial Engineering, Tsinghua University, Beijing, China. He received a BS degree in software engineering from Wuhan University, China in 2005, and a PhD degree in industrial and systems engineering from the National University of Singapore in 2010. His current research interests include RAMS (reliability, availability, maintainability, safety) assessment and optimization with the applications onto various industrial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
临子完成签到,获得积分10
3秒前
5秒前
5秒前
8秒前
wangwangwang完成签到,获得积分10
11秒前
英姑应助活力天蓝采纳,获得30
11秒前
年年年年发布了新的文献求助10
11秒前
无心的善愁完成签到 ,获得积分10
17秒前
冷酷愚志完成签到,获得积分10
18秒前
李健应助年年年年采纳,获得10
18秒前
许伟洋完成签到 ,获得积分10
18秒前
汉堡包应助怕孤单的石头采纳,获得10
20秒前
不安的未来完成签到,获得积分10
23秒前
遥知马完成签到,获得积分10
25秒前
25秒前
26秒前
科研通AI6.1应助Kz采纳,获得10
29秒前
冰汤葫芦发布了新的文献求助10
32秒前
桃子e发布了新的文献求助10
33秒前
酷炫的爆米花完成签到,获得积分10
37秒前
尤诺完成签到 ,获得积分10
38秒前
无名子完成签到 ,获得积分10
39秒前
鱼蛋完成签到,获得积分20
40秒前
41秒前
42秒前
鱼蛋发布了新的文献求助30
46秒前
爆米花应助小鱼采纳,获得10
46秒前
归宁发布了新的文献求助10
49秒前
斯文梦寒完成签到 ,获得积分10
50秒前
sophy发布了新的文献求助20
52秒前
53秒前
紧张的友灵完成签到,获得积分10
53秒前
韩祖完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779750
求助须知:如何正确求助?哪些是违规求助? 5649480
关于积分的说明 15452248
捐赠科研通 4910842
什么是DOI,文献DOI怎么找? 2642978
邀请新用户注册赠送积分活动 1590629
关于科研通互助平台的介绍 1545067