A multi-sensor fusion-based prognostic model for systems with partially observable failure modes

计算机科学 可见的 残余物 人工智能 监督学习 失效模式及影响分析 数据挖掘 涡扇发动机 机器学习 可靠性工程 人工神经网络 工程类 算法 物理 量子力学 汽车工程
作者
Hui Wu,Yan‐Fu Li
出处
期刊:IISE transactions [Informa]
卷期号:56 (6): 624-637 被引量:6
标识
DOI:10.1080/24725854.2023.2222402
摘要

AbstractWith the rapid development of sensor and communication technology, multi-sensor data is available to monitor the degradation of complex systems and predict the failure modes. However, two huge challenges remain to be resolved: (i) how to predict the failure modes with limited failure mode labeled systems to alleviate the heavy dependence on expert experience; (ii) how to effectively fuze the useful information from the multi-sensor data to achieve an accurate estimation of the degradation status automatically. To address these issues, we propose a novel semi-supervised prognostic model for the systems with partially observable failure modes, where only a small fraction of the systems in the training set are known for their failure modes. First, we develop a graph-based semi-supervised learning method to extract features characterizing the failure modes. Then, we input these features as well as the multi-sensor streams into an elastic net functional regression model to predict the residual useful lifetime. The proposed model is validated by extensive simulation studies and a case study of aircraft turbofan engines available from the NASA repository.Keywords: Data fusionfailure modesfunctional principal components analysissemi-supervised learning AcknowledgmentsThe authors would like to thank the editors and referees for their many constructive and insightful comments, which have promoted significant improvements of this article.Additional informationFundingThe work described in this paper was supported by National Natural Science Foundation of China (No.71731008). Notes on contributorsHui WuHui Wu is an associate professor with the School of Economics and Management, Harbin Institute of Technology, Weihai, China. She received a BS degree in statistics from Shandong University, Jinan, China, in 2018, and a PhD degree in management science and engineering from Tsinghua University, Beijing, China, in 2022. Her current research focuses on developing statistical learning and artificial intelligence methods for large-scale complex system modeling, online monitoring, anomaly detection, and reliability analysis.Yan-Fu LiYan-Fu Li is a professor with Department of Industrial Engineering, Tsinghua University, Beijing, China. He received a BS degree in software engineering from Wuhan University, China in 2005, and a PhD degree in industrial and systems engineering from the National University of Singapore in 2010. His current research interests include RAMS (reliability, availability, maintainability, safety) assessment and optimization with the applications onto various industrial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶落风行完成签到,获得积分10
刚刚
YES发布了新的文献求助10
刚刚
supersunshine完成签到,获得积分10
1秒前
CHR完成签到,获得积分10
2秒前
song发布了新的文献求助10
2秒前
3秒前
祭礼之龙完成签到,获得积分10
3秒前
3秒前
叶落风行发布了新的文献求助10
3秒前
3秒前
3秒前
喵呜发布了新的文献求助10
4秒前
xue完成签到,获得积分10
4秒前
5秒前
一路生花发布了新的文献求助10
5秒前
chao完成签到,获得积分10
5秒前
6秒前
liucc完成签到,获得积分10
6秒前
果酱君完成签到,获得积分10
6秒前
深情安青应助AAA采纳,获得10
6秒前
Orange应助三人行采纳,获得10
7秒前
犹豫煜城发布了新的文献求助10
7秒前
Azur1完成签到,获得积分10
8秒前
顾末完成签到,获得积分10
9秒前
sanlang应助xingziyu采纳,获得10
9秒前
小七完成签到,获得积分10
9秒前
魔幻的板凳完成签到,获得积分10
9秒前
阿布来也发布了新的文献求助10
9秒前
yqcj59完成签到,获得积分10
10秒前
10秒前
王业美少一横咯完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
努力的大狼狗完成签到,获得积分10
10秒前
wlincarol完成签到,获得积分10
10秒前
小兔子乖乖完成签到 ,获得积分10
11秒前
11发布了新的文献求助10
12秒前
一路生花完成签到,获得积分10
12秒前
zhangpeipei完成签到,获得积分10
12秒前
今后应助土豆小狗勇敢飞采纳,获得10
12秒前
fanfan完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765363
求助须知:如何正确求助?哪些是违规求助? 5560745
关于积分的说明 15408637
捐赠科研通 4900116
什么是DOI,文献DOI怎么找? 2636197
邀请新用户注册赠送积分活动 1584411
关于科研通互助平台的介绍 1539665