A multi-sensor fusion-based prognostic model for systems with partially observable failure modes

计算机科学 可见的 残余物 人工智能 监督学习 失效模式及影响分析 数据挖掘 涡扇发动机 机器学习 可靠性工程 人工神经网络 工程类 算法 量子力学 物理 汽车工程
作者
Hui Wu,Yan‐Fu Li
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:56 (6): 624-637 被引量:3
标识
DOI:10.1080/24725854.2023.2222402
摘要

AbstractWith the rapid development of sensor and communication technology, multi-sensor data is available to monitor the degradation of complex systems and predict the failure modes. However, two huge challenges remain to be resolved: (i) how to predict the failure modes with limited failure mode labeled systems to alleviate the heavy dependence on expert experience; (ii) how to effectively fuze the useful information from the multi-sensor data to achieve an accurate estimation of the degradation status automatically. To address these issues, we propose a novel semi-supervised prognostic model for the systems with partially observable failure modes, where only a small fraction of the systems in the training set are known for their failure modes. First, we develop a graph-based semi-supervised learning method to extract features characterizing the failure modes. Then, we input these features as well as the multi-sensor streams into an elastic net functional regression model to predict the residual useful lifetime. The proposed model is validated by extensive simulation studies and a case study of aircraft turbofan engines available from the NASA repository.Keywords: Data fusionfailure modesfunctional principal components analysissemi-supervised learning AcknowledgmentsThe authors would like to thank the editors and referees for their many constructive and insightful comments, which have promoted significant improvements of this article.Additional informationFundingThe work described in this paper was supported by National Natural Science Foundation of China (No.71731008). Notes on contributorsHui WuHui Wu is an associate professor with the School of Economics and Management, Harbin Institute of Technology, Weihai, China. She received a BS degree in statistics from Shandong University, Jinan, China, in 2018, and a PhD degree in management science and engineering from Tsinghua University, Beijing, China, in 2022. Her current research focuses on developing statistical learning and artificial intelligence methods for large-scale complex system modeling, online monitoring, anomaly detection, and reliability analysis.Yan-Fu LiYan-Fu Li is a professor with Department of Industrial Engineering, Tsinghua University, Beijing, China. He received a BS degree in software engineering from Wuhan University, China in 2005, and a PhD degree in industrial and systems engineering from the National University of Singapore in 2010. His current research interests include RAMS (reliability, availability, maintainability, safety) assessment and optimization with the applications onto various industrial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助科研鸟采纳,获得10
1秒前
1秒前
公孙世往发布了新的文献求助10
1秒前
开放剑鬼完成签到,获得积分10
2秒前
gean完成签到,获得积分10
2秒前
3秒前
dada完成签到,获得积分10
5秒前
Yuki酱发布了新的文献求助10
5秒前
医痞子发布了新的文献求助10
6秒前
Cassie完成签到,获得积分0
6秒前
9秒前
12秒前
卡农完成签到,获得积分10
12秒前
达布妞完成签到,获得积分10
13秒前
脑残骑士老张完成签到,获得积分10
13秒前
14秒前
伍秋望完成签到,获得积分10
14秒前
顾矜应助jt采纳,获得10
14秒前
晚风发布了新的文献求助10
15秒前
15秒前
钱罐罐发布了新的文献求助10
17秒前
ppsy发布了新的文献求助30
18秒前
19秒前
lily发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助du采纳,获得10
22秒前
Cyber_relic完成签到,获得积分10
22秒前
23秒前
24秒前
离枝完成签到,获得积分10
24秒前
25秒前
桐桐应助鱼咬羊采纳,获得10
25秒前
YF是杨芳发布了新的文献求助10
25秒前
科研鸟发布了新的文献求助10
25秒前
离枝发布了新的文献求助30
28秒前
梨子完成签到,获得积分10
28秒前
29秒前
共享精神应助安静的天思采纳,获得30
29秒前
PACEPANG完成签到 ,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159739
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804374