A multi-sensor fusion-based prognostic model for systems with partially observable failure modes

计算机科学 可见的 残余物 人工智能 监督学习 失效模式及影响分析 数据挖掘 涡扇发动机 机器学习 可靠性工程 人工神经网络 工程类 算法 物理 量子力学 汽车工程
作者
Hui Wu,Yan‐Fu Li
出处
期刊:IISE transactions [Informa]
卷期号:56 (6): 624-637 被引量:3
标识
DOI:10.1080/24725854.2023.2222402
摘要

AbstractWith the rapid development of sensor and communication technology, multi-sensor data is available to monitor the degradation of complex systems and predict the failure modes. However, two huge challenges remain to be resolved: (i) how to predict the failure modes with limited failure mode labeled systems to alleviate the heavy dependence on expert experience; (ii) how to effectively fuze the useful information from the multi-sensor data to achieve an accurate estimation of the degradation status automatically. To address these issues, we propose a novel semi-supervised prognostic model for the systems with partially observable failure modes, where only a small fraction of the systems in the training set are known for their failure modes. First, we develop a graph-based semi-supervised learning method to extract features characterizing the failure modes. Then, we input these features as well as the multi-sensor streams into an elastic net functional regression model to predict the residual useful lifetime. The proposed model is validated by extensive simulation studies and a case study of aircraft turbofan engines available from the NASA repository.Keywords: Data fusionfailure modesfunctional principal components analysissemi-supervised learning AcknowledgmentsThe authors would like to thank the editors and referees for their many constructive and insightful comments, which have promoted significant improvements of this article.Additional informationFundingThe work described in this paper was supported by National Natural Science Foundation of China (No.71731008). Notes on contributorsHui WuHui Wu is an associate professor with the School of Economics and Management, Harbin Institute of Technology, Weihai, China. She received a BS degree in statistics from Shandong University, Jinan, China, in 2018, and a PhD degree in management science and engineering from Tsinghua University, Beijing, China, in 2022. Her current research focuses on developing statistical learning and artificial intelligence methods for large-scale complex system modeling, online monitoring, anomaly detection, and reliability analysis.Yan-Fu LiYan-Fu Li is a professor with Department of Industrial Engineering, Tsinghua University, Beijing, China. He received a BS degree in software engineering from Wuhan University, China in 2005, and a PhD degree in industrial and systems engineering from the National University of Singapore in 2010. His current research interests include RAMS (reliability, availability, maintainability, safety) assessment and optimization with the applications onto various industrial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI5应助王佳乐采纳,获得10
2秒前
3秒前
5秒前
5秒前
烨伟发布了新的文献求助10
7秒前
昂口3完成签到 ,获得积分10
9秒前
xkk13发布了新的文献求助10
10秒前
10秒前
BiuBiuBiu完成签到 ,获得积分10
11秒前
NexusExplorer应助mycroft采纳,获得10
12秒前
Eileen完成签到,获得积分10
12秒前
发一篇sci完成签到 ,获得积分10
13秒前
儒雅八宝粥完成签到 ,获得积分10
13秒前
华仔应助吉他平方采纳,获得10
13秒前
13秒前
可爱的函函应助hhhh_xt采纳,获得10
13秒前
夏侯觅风发布了新的文献求助10
13秒前
14秒前
my完成签到,获得积分10
15秒前
15秒前
乐乐应助蛙趣采纳,获得10
16秒前
早川发布了新的文献求助10
16秒前
17秒前
英俊剑鬼完成签到,获得积分10
17秒前
活泼火水完成签到,获得积分10
17秒前
18秒前
美文发布了新的文献求助10
18秒前
核桃酥应助berg采纳,获得10
18秒前
za==发布了新的文献求助30
19秒前
领导范儿应助kaisa采纳,获得10
19秒前
20秒前
20秒前
20秒前
端庄的以寒完成签到,获得积分10
21秒前
lily完成签到,获得积分10
22秒前
22秒前
寻舟者完成签到,获得积分10
24秒前
不爱吃苹果完成签到,获得积分10
24秒前
xcs完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525113
求助须知:如何正确求助?哪些是违规求助? 3105858
关于积分的说明 9276751
捐赠科研通 2803146
什么是DOI,文献DOI怎么找? 1538444
邀请新用户注册赠送积分活动 716232
科研通“疑难数据库(出版商)”最低求助积分说明 709319