A multi-sensor fusion-based prognostic model for systems with partially observable failure modes

计算机科学 可见的 残余物 人工智能 监督学习 失效模式及影响分析 数据挖掘 涡扇发动机 机器学习 可靠性工程 人工神经网络 工程类 算法 量子力学 物理 汽车工程
作者
Hui Wu,Yan‐Fu Li
出处
期刊:IISE transactions [Taylor & Francis]
卷期号:56 (6): 624-637 被引量:3
标识
DOI:10.1080/24725854.2023.2222402
摘要

AbstractWith the rapid development of sensor and communication technology, multi-sensor data is available to monitor the degradation of complex systems and predict the failure modes. However, two huge challenges remain to be resolved: (i) how to predict the failure modes with limited failure mode labeled systems to alleviate the heavy dependence on expert experience; (ii) how to effectively fuze the useful information from the multi-sensor data to achieve an accurate estimation of the degradation status automatically. To address these issues, we propose a novel semi-supervised prognostic model for the systems with partially observable failure modes, where only a small fraction of the systems in the training set are known for their failure modes. First, we develop a graph-based semi-supervised learning method to extract features characterizing the failure modes. Then, we input these features as well as the multi-sensor streams into an elastic net functional regression model to predict the residual useful lifetime. The proposed model is validated by extensive simulation studies and a case study of aircraft turbofan engines available from the NASA repository.Keywords: Data fusionfailure modesfunctional principal components analysissemi-supervised learning AcknowledgmentsThe authors would like to thank the editors and referees for their many constructive and insightful comments, which have promoted significant improvements of this article.Additional informationFundingThe work described in this paper was supported by National Natural Science Foundation of China (No.71731008). Notes on contributorsHui WuHui Wu is an associate professor with the School of Economics and Management, Harbin Institute of Technology, Weihai, China. She received a BS degree in statistics from Shandong University, Jinan, China, in 2018, and a PhD degree in management science and engineering from Tsinghua University, Beijing, China, in 2022. Her current research focuses on developing statistical learning and artificial intelligence methods for large-scale complex system modeling, online monitoring, anomaly detection, and reliability analysis.Yan-Fu LiYan-Fu Li is a professor with Department of Industrial Engineering, Tsinghua University, Beijing, China. He received a BS degree in software engineering from Wuhan University, China in 2005, and a PhD degree in industrial and systems engineering from the National University of Singapore in 2010. His current research interests include RAMS (reliability, availability, maintainability, safety) assessment and optimization with the applications onto various industrial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SARON完成签到 ,获得积分10
1秒前
cxlhzq完成签到,获得积分0
1秒前
2秒前
Disguise完成签到 ,获得积分10
2秒前
marryhh完成签到 ,获得积分10
2秒前
xinxin完成签到 ,获得积分10
3秒前
police完成签到 ,获得积分10
4秒前
muzi发布了新的文献求助10
5秒前
123完成签到,获得积分20
7秒前
花花懿懿完成签到,获得积分10
7秒前
宁燕完成签到,获得积分10
7秒前
阿靖完成签到,获得积分10
9秒前
花花懿懿发布了新的文献求助10
10秒前
pp完成签到 ,获得积分10
11秒前
11秒前
飘逸的山柏完成签到 ,获得积分10
11秒前
倪兰云完成签到,获得积分20
15秒前
cappuccino完成签到 ,获得积分10
15秒前
wanci应助xiaoyi采纳,获得10
16秒前
呆萌滑板完成签到 ,获得积分10
16秒前
ZXH发布了新的文献求助10
17秒前
Merci完成签到,获得积分10
19秒前
邓代容完成签到 ,获得积分0
22秒前
23秒前
胡可完成签到 ,获得积分10
23秒前
月月鸟完成签到 ,获得积分10
24秒前
子衿完成签到 ,获得积分10
26秒前
27秒前
27秒前
lgl完成签到,获得积分10
28秒前
光晦完成签到 ,获得积分10
29秒前
小鱼儿发布了新的文献求助10
29秒前
精明的盼雁完成签到,获得积分10
30秒前
尘南浔发布了新的文献求助10
30秒前
carbonhan完成签到,获得积分10
30秒前
LmyHusband完成签到,获得积分10
30秒前
听闻韬声依旧完成签到 ,获得积分10
31秒前
Faded完成签到 ,获得积分10
34秒前
dddd完成签到 ,获得积分10
35秒前
35秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5223798
求助须知:如何正确求助?哪些是违规求助? 4396038
关于积分的说明 13682589
捐赠科研通 4260141
什么是DOI,文献DOI怎么找? 2337783
邀请新用户注册赠送积分活动 1335157
关于科研通互助平台的介绍 1290838