已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-sensor fusion-based prognostic model for systems with partially observable failure modes

计算机科学 可见的 残余物 人工智能 监督学习 失效模式及影响分析 数据挖掘 涡扇发动机 机器学习 可靠性工程 人工神经网络 工程类 算法 量子力学 物理 汽车工程
作者
Hui Wu,Yan‐Fu Li
出处
期刊:IISE transactions [Informa]
卷期号:56 (6): 624-637 被引量:6
标识
DOI:10.1080/24725854.2023.2222402
摘要

AbstractWith the rapid development of sensor and communication technology, multi-sensor data is available to monitor the degradation of complex systems and predict the failure modes. However, two huge challenges remain to be resolved: (i) how to predict the failure modes with limited failure mode labeled systems to alleviate the heavy dependence on expert experience; (ii) how to effectively fuze the useful information from the multi-sensor data to achieve an accurate estimation of the degradation status automatically. To address these issues, we propose a novel semi-supervised prognostic model for the systems with partially observable failure modes, where only a small fraction of the systems in the training set are known for their failure modes. First, we develop a graph-based semi-supervised learning method to extract features characterizing the failure modes. Then, we input these features as well as the multi-sensor streams into an elastic net functional regression model to predict the residual useful lifetime. The proposed model is validated by extensive simulation studies and a case study of aircraft turbofan engines available from the NASA repository.Keywords: Data fusionfailure modesfunctional principal components analysissemi-supervised learning AcknowledgmentsThe authors would like to thank the editors and referees for their many constructive and insightful comments, which have promoted significant improvements of this article.Additional informationFundingThe work described in this paper was supported by National Natural Science Foundation of China (No.71731008). Notes on contributorsHui WuHui Wu is an associate professor with the School of Economics and Management, Harbin Institute of Technology, Weihai, China. She received a BS degree in statistics from Shandong University, Jinan, China, in 2018, and a PhD degree in management science and engineering from Tsinghua University, Beijing, China, in 2022. Her current research focuses on developing statistical learning and artificial intelligence methods for large-scale complex system modeling, online monitoring, anomaly detection, and reliability analysis.Yan-Fu LiYan-Fu Li is a professor with Department of Industrial Engineering, Tsinghua University, Beijing, China. He received a BS degree in software engineering from Wuhan University, China in 2005, and a PhD degree in industrial and systems engineering from the National University of Singapore in 2010. His current research interests include RAMS (reliability, availability, maintainability, safety) assessment and optimization with the applications onto various industrial systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高屋建瓴完成签到,获得积分10
刚刚
无花果应助momi采纳,获得50
2秒前
菜芽君完成签到,获得积分10
3秒前
爆米花应助leslie采纳,获得10
8秒前
wanci应助leslie采纳,获得10
8秒前
科研通AI6应助leslie采纳,获得10
8秒前
WhiteCaramel完成签到 ,获得积分10
9秒前
爱听歌的火火完成签到,获得积分20
11秒前
小栗子完成签到,获得积分10
13秒前
15秒前
徐biao发布了新的文献求助20
15秒前
鹿小新发布了新的文献求助10
19秒前
jyy完成签到,获得积分10
20秒前
蛙蛙完成签到,获得积分10
21秒前
华仔应助徐biao采纳,获得10
29秒前
绮烟完成签到 ,获得积分10
30秒前
31秒前
酷酷以柳完成签到,获得积分10
32秒前
Criminology34举报无风求助涉嫌违规
33秒前
月儿完成签到 ,获得积分10
41秒前
43秒前
45秒前
51秒前
阳阳完成签到,获得积分10
53秒前
moiumuio完成签到,获得积分10
54秒前
55秒前
郝誉发布了新的文献求助10
56秒前
cenghao发布了新的文献求助10
56秒前
圈哥完成签到 ,获得积分10
56秒前
香樟沐雪完成签到 ,获得积分10
57秒前
one应助Fionn采纳,获得10
58秒前
斯文败类应助科研通管家采纳,获得10
59秒前
思源应助科研通管家采纳,获得10
59秒前
无极微光应助科研通管家采纳,获得20
59秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
BowieHuang应助科研通管家采纳,获得10
59秒前
59秒前
59秒前
VDC发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581