Envisioning the future of learning and teaching engineering in the artificial intelligence era: Opportunities and challenges

课程 图书馆学 工程教育 引用 工程类 医学教育 心理学 医学 计算机科学 教育学 工程管理
作者
Muhsin Menekşe
出处
期刊:Journal of Engineering Education [Wiley]
卷期号:112 (3): 578-582 被引量:13
标识
DOI:10.1002/jee.20539
摘要

Journal of Engineering EducationVolume 112, Issue 3 p. 578-582 GUEST EDITORIAL Envisioning the future of learning and teaching engineering in the artificial intelligence era: Opportunities and challenges Muhsin Menekse, Corresponding Author Muhsin Menekse [email protected] orcid.org/0000-0002-5547-5455 School of Engineering Education, Purdue University, West Lafayette, Indiana, USA Department of Curriculum and Instruction, Purdue University, West Lafayette, Indiana, USA Correspondence Muhsin Menekse, School of Engineering Education, Purdue University, West Lafayette, IN, USA. Email: [email protected]Search for more papers by this author Muhsin Menekse, Corresponding Author Muhsin Menekse [email protected] orcid.org/0000-0002-5547-5455 School of Engineering Education, Purdue University, West Lafayette, Indiana, USA Department of Curriculum and Instruction, Purdue University, West Lafayette, Indiana, USA Correspondence Muhsin Menekse, School of Engineering Education, Purdue University, West Lafayette, IN, USA. Email: [email protected]Search for more papers by this author First published: 20 June 2023 https://doi.org/10.1002/jee.20539Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Akgun, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K–12 settings. AI Ethics, 2, 431–440. https://doi.org/10.1007/s43681-021-00096-7 Alevin, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2016). Instruction based on adaptive learning technologies. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 522–560). Routledge. ISBN: 113883176X. Balakrishnan, B., & Long, C. Y. (2020). An effective self-directed personalized learning environment for engineering students during the COVID-19 pandemic. Advances in Engineering Education, 8(4), 1–8. Bearman, M., Boud, D., & Ajjawi, R. (2020). New directions for assessment in a digital world. In M. Bearman, P. Dawson, R. Ajjawi, J. Tai, & D. Boud (Eds.), Re-imagining university assessment in a digital world (pp. 7–18). The enabling power of assessment (Vol. 7). Springer. https://doi.org/10.1007/978-3-030-41956-1_2 Chase, C. C., Chin, D. B., Oppezzo, M. A., & Schwartz, D. L. (2009). Teachable agents and the Protégé effect: Increasing the effort towards learning. Journal of Science Education and Technology, 18(4), 334–352. https://doi.org/10.1007/s10956-009-9180-4 Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, T. (2001). Learning from human tutoring. Cognitive Science, 25(4), 471–533. https://doi.org/10.1016/S0364-0213(01)00044-1 Chou, C. Y., & Chan, T. W. (2016). Reciprocal tutoring: Design with cognitive load sharing. International Journal of Artificial Intelligence in Education, 26, 512–535. Dawani, S. (2023). Integrating artificial intelligence into creativity education: Developing a creative problem-solving course for higher education. Creative Studies Graduate Student Master's Projects. https://digitalcommons.buffalostate.edu/creativeprojects/363 Duran, D., & Topping, K. J. (2017). Learning by teaching: Evidence-based strategies to enhance learning in the classroom. Routledge. Estrada, M., Burnett, M., Campbell, A. G., Campbell, P. B., Denetclaw, W. F., Gutiérrez, C. G., Hurtado, S., John, G. H., Matsui, J., McGee, R., Okpodu, C. M., Robinson, T. J., Summers, M. F., Werner–Washburn, M., & Zavala, M. (2016). Improving underrepresented minority student persistence in STEM. CBE—Life Sciences Education, 15(3), es5. https://doi.org/10.1187/cbe.16-01-0038 Fan, X., Luo, W., Menekse, M., Litman, D., & Wang, J. (2015). Course MIRROR: enhancing large classroom instructor-student interactions via mobile interfaces and natural language processing. Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA '15) (pp. 1473–1478). Association for Computing Machinery. https://doi.org/10.1145/2702613.2732853 Huang, K. (2023). Alarmed by AI chatbots, universities start revamping how they teach. New York Times. https://www.nytimes.com/2023/01/16/technology/chatgpt-artificial-intelligence-universities.html Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Kasneci, E., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., … Kasneci, G. (2023). Chat GPT for good? on opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274 Koretsky, M. D., Amatore, D., Barnes, C., & Kimura, S. (2008). Enhancement of student learning in experimental design using a virtual laboratory. IEEE Transactions on Education, 51(1), 76–85. Leelawong, K., & Biswas, G. (2008). Designing learning by teaching agents: The Betty's brain system. International Journal of Artificial Intelligence in Education, 18(3), 181–208. Luo, W., Fan, X., Menekse, M., Wang, J., & Litman, D. (2015). Enhancing instructor-student and student-student interactions with mobile interfaces and summarization. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations (pp. 16–20, May 31 – June 5, 2015). https://doi.org/10.3115/v1/N15-3004 Menekse, M. (2020). The reflection-informed learning and instruction to improve students' academic success in undergraduate classrooms. The Journal of Experimental Education, 88(2), 183–199. https://doi.org/10.1080/00220973.2019.1620159 Menekse, M., Anwar, S., & Akdemir, Z. G. (2022). How do different reflection prompts affect engineering students' academic performance and engagement? The Journal of Experimental Education, 90(2), 261–279. Menekse, M., Anwar, S., & Purzer, S. (2018). Self-Efficacy and mobile learning technologies: A case study of course MIRROR. In C. Hodges (Ed.), Self-efficacy in instructional technology contexts. Springer. https://doi.org/10.1007/978-3-319-99858-9_4 Menekse, M., Stump, G., Krause, S., & Chi, M. T. H. (2013). Differentiated overt learning activities for effective instruction in engineering classrooms. Journal of Engineering Education, 102(3), 346–374. https://doi.org/10.1002/jee.20021 Miller, R. L., Streveler, R. A., Yang, D., & Santiago Román, A. I. (2011). Identifying and repairing student misconceptions in thermal and transport science: Concept inventories and schema training studies. Chemical Engineering Education, 45(3), 203–210. Mollick, E. R., & Mollick, L. (2023). Using AI to implement effective teaching strategies in classrooms: five strategies, including prompts (March 17, 2023). Available at SSRN: https://ssrn.com/abstract=4391243 or https://doi.org/10.2139/ssrn.4391243 Nie, J., Yuan, Y., Chao, X., Li, Y., & Lv, L. (2023). In smart classroom: Investigating the relationship between human–computer interaction, cognitive load and academic emotion. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2023.2190257 Nikolic, S., Daniel, S., Haque, R., Belkina, M., Hassan, G. M., Grundy, S., Lyden, S., Neal, P., & Sandison, C. (2023). ChatGPT versus engineering education assessment: A multidisciplinary and multi-institutional benchmarking and analysis of this generative artificial intelligence tool to investigate assessment integrity. European Journal of Engineering Education. https://doi.org/10.1080/03043797.2023.2213169 OpenAI. (2023). GPT-4 technical report. https://arxiv.org/pdf/2303.08774.pdf Reeves, S. M., & Crippen, K. J. (2021). Virtual laboratories in undergraduate science and engineering courses: A systematic review, 2009–2019. Journal of Science Education and Technology, 30, 16–30. Roscoe, R. D., & Chi, M. T. (2007). Understanding tutor learning: Knowledge-building and knowledge-telling in peer tutors' explanations and questions. Review of Educational Research, 77(4), 534–574. Streveler, R., & Menekse, M. (2017). Taking a closer look at active learning. Journal of Engineering Education, 106(2), 186–190. https://doi.org/10.1002/jee.20160 Sun, L., Wei, M., Sun, Y., Suh, Y. J., Shen, L., & Yang, S. (2023). Smiling women pitching down: Auditing representational and presentational gender biases in image generative AI. arXiv preprint arXiv:2305.10566. Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. U.S. Department of Education. (2023). Artificial intelligence and future of teaching and learning: Insights and recommendations. Office of Educational Technology. https://tech.ed.gov/ai-future-of-teaching-and-learning/ Van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17, 147–177. Walker, E., Rummel, N., & Koedinger, K. R. (2015). Adaptive intelligent support to improve peer tutoring in algebra. International Journal of Artificial Intelligence in Education, 24, 33–61. https://doi.org/10.1007/s40593-013-0001-9 Volume112, Issue3July 2023Pages 578-582 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Yue发布了新的文献求助10
1秒前
2秒前
2秒前
TRY发布了新的文献求助10
2秒前
研友_nq2QpZ完成签到,获得积分10
2秒前
英姑应助岩鹰采纳,获得10
3秒前
5秒前
5秒前
HughWang完成签到,获得积分10
6秒前
活力安南发布了新的文献求助10
7秒前
自由十三发布了新的文献求助10
7秒前
觅兴完成签到,获得积分0
7秒前
7秒前
8秒前
HMONEY应助hb采纳,获得10
8秒前
10秒前
明明完成签到,获得积分20
10秒前
wonwojo发布了新的文献求助10
10秒前
明德zhuang发布了新的文献求助30
11秒前
徐逊发布了新的文献求助10
11秒前
八段锦完成签到 ,获得积分10
13秒前
竹前家庆发布了新的文献求助30
14秒前
15秒前
16秒前
ShellyHan发布了新的文献求助10
16秒前
16秒前
coco发布了新的文献求助30
17秒前
17秒前
Ava应助academician采纳,获得10
18秒前
科研通AI5应助jjj采纳,获得10
19秒前
网易发布了新的文献求助10
20秒前
insane发布了新的文献求助10
21秒前
22秒前
22秒前
ren完成签到 ,获得积分10
23秒前
慕南枝发布了新的文献求助10
23秒前
小蘑菇应助我叫王子禹采纳,获得10
24秒前
xxxhl完成签到,获得积分10
24秒前
胡杨树2006完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427