计算机科学
机器学习
深度学习
人工智能
卷积神经网络
人工神经网络
数量结构-活动关系
作者
Haoyue Tan,Jinsha Jin,Chao Fang,Ying Zhang,Baodi Chang,Xiaowei Zhang,Hongxia Yu,Wei Shi
出处
期刊:ACS ES&T water
[American Chemical Society]
日期:2023-06-20
卷期号:4 (3): 805-819
被引量:8
标识
DOI:10.1021/acsestwater.3c00152
摘要
Ubiquitous chemicals in the environment may pose a threat to human health and the ecosystem, so comprehensive toxicity information must be obtained. Due to the inability of traditional experimental methods to meet the needs of toxicity testing of a large number of chemicals, in vivo and in vitro assays have been shifted to a new paradigm, computer-assisted virtual screening. However, the commonly used virtual screening techniques, including read-across and machine learning-based quantitative structure–activity relationship (QSAR), have limitations in assessing complicated, high-dimensional, and multimodal bioactivity data. In these cases, deep learning (DL) has emerged as a desirable solution for the application of QSARs in toxicity prediction. Therefore, this paper introduces and discusses (a) architectures of six commonly used DL algorithms (fully connected neural network, convolutional neural network, recurrent neural network, long short-term memory, graph neural network, and generative adversarial network), (b) the application scenarios of six DL algorithms, e.g., toxicity prediction and data generation, and (c) challenges and future trends of DLs in toxicity prediction. We believe that by consolidating toxicological mechanisms and DL algorithms, this survey can help readers to build prediction models with excellent performance while promoting further discussions of the fusion of environmental toxicology and DL.
科研通智能强力驱动
Strongly Powered by AbleSci AI