A novel one-to-multiple unsupervised domain adaptation framework for abdominal organ segmentation

计算机科学 分割 人工智能 模式识别(心理学) 一致性(知识库) 领域(数学分析) 相似性(几何) 图像(数学) 数学 数学分析
作者
Xiaowei Xu,Yinan Chen,Jianghao Wu,Jiangshan Lu,Yuxiang Ye,Yechong Huang,Xin Dou,Kang Li,Guotai Wang,Shaoting Zhang,Wenjuan Gong
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102873-102873 被引量:6
标识
DOI:10.1016/j.media.2023.102873
摘要

Abdominal multi-organ segmentation in multi-sequence magnetic resonance images (MRI) is of great significance in many clinical scenarios, e.g., MRI-oriented pre-operative treatment planning. Labeling multiple organs on a single MR sequence is a time-consuming and labor-intensive task, let alone manual labeling on multiple MR sequences. Training a model by one sequence and generalizing it to other domains is one way to reduce the burden of manual annotation, but the existence of domain gap often leads to poor generalization performance of such methods. Image translation-based unsupervised domain adaptation (UDA) is a common way to address this domain gap issue. However, existing methods focus less on keeping anatomical consistency and are limited by one-to-one domain adaptation, leading to low efficiency for adapting a model to multiple target domains. This work proposes a unified framework called OMUDA for one-to-multiple unsupervised domain-adaptive segmentation, where disentanglement between content and style is used to efficiently translate a source domain image into multiple target domains. Moreover, generator refactoring and style constraint are conducted in OMUDA for better maintaining cross-modality structural consistency and reducing domain aliasing. The average Dice Similarity Coefficients (DSCs) of OMUDA for multiple sequences and organs on the in-house test set, the AMOS22 dataset and the CHAOS dataset are 85.51%, 82.66% and 91.38%, respectively, which are slightly lower than those of CycleGAN(85.66% and 83.40%) in the first two data sets and slightly higher than CycleGAN(91.36%) in the last dataset. But compared with CycleGAN, OMUDA reduces floating-point calculations by about 87 percent in the training phase and about 30 percent in the inference stage respectively. The quantitative results in both segmentation performance and training efficiency demonstrate the usability of OMUDA in some practical scenes, such as the initial phase of product development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
133发布了新的文献求助10
1秒前
傻呆呆发布了新的文献求助10
2秒前
仇道罡发布了新的文献求助10
2秒前
sys发布了新的文献求助20
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
嘟嘟嘟嘟完成签到 ,获得积分10
3秒前
大个应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
时尚的莛发布了新的文献求助10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得30
4秒前
小镇青年完成签到,获得积分10
4秒前
萧水白应助科研通管家采纳,获得10
4秒前
mhl11应助科研通管家采纳,获得10
4秒前
小旋风应助科研通管家采纳,获得10
4秒前
starry完成签到 ,获得积分10
4秒前
gying应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
mhl11应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
l玖应助feng采纳,获得10
6秒前
6秒前
ATP关闭了ATP文献求助
7秒前
千俞完成签到 ,获得积分10
7秒前
8秒前
可爱的函函应助roclie采纳,获得10
9秒前
cpli完成签到,获得积分10
9秒前
10秒前
Diaperless发布了新的文献求助30
11秒前
芳芳子完成签到 ,获得积分10
12秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329176
求助须知:如何正确求助?哪些是违规求助? 2959017
关于积分的说明 8593407
捐赠科研通 2637410
什么是DOI,文献DOI怎么找? 1443494
科研通“疑难数据库(出版商)”最低求助积分说明 668742
邀请新用户注册赠送积分活动 656083