A novel one-to-multiple unsupervised domain adaptation framework for abdominal organ segmentation

计算机科学 分割 人工智能 模式识别(心理学) 一致性(知识库) 领域(数学分析) 相似性(几何) 图像(数学) 数学 数学分析
作者
Xiaowei Xu,Yinan Chen,Jianghao Wu,Jiangshan Lu,Yuxiang Ye,Yechong Huang,Xin Dou,Kang Li,Guotai Wang,Shaoting Zhang,Wei Gong
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:88: 102873-102873 被引量:11
标识
DOI:10.1016/j.media.2023.102873
摘要

Abdominal multi-organ segmentation in multi-sequence magnetic resonance images (MRI) is of great significance in many clinical scenarios, e.g., MRI-oriented pre-operative treatment planning. Labeling multiple organs on a single MR sequence is a time-consuming and labor-intensive task, let alone manual labeling on multiple MR sequences. Training a model by one sequence and generalizing it to other domains is one way to reduce the burden of manual annotation, but the existence of domain gap often leads to poor generalization performance of such methods. Image translation-based unsupervised domain adaptation (UDA) is a common way to address this domain gap issue. However, existing methods focus less on keeping anatomical consistency and are limited by one-to-one domain adaptation, leading to low efficiency for adapting a model to multiple target domains. This work proposes a unified framework called OMUDA for one-to-multiple unsupervised domain-adaptive segmentation, where disentanglement between content and style is used to efficiently translate a source domain image into multiple target domains. Moreover, generator refactoring and style constraint are conducted in OMUDA for better maintaining cross-modality structural consistency and reducing domain aliasing. The average Dice Similarity Coefficients (DSCs) of OMUDA for multiple sequences and organs on the in-house test set, the AMOS22 dataset and the CHAOS dataset are 85.51%, 82.66% and 91.38%, respectively, which are slightly lower than those of CycleGAN(85.66% and 83.40%) in the first two data sets and slightly higher than CycleGAN(91.36%) in the last dataset. But compared with CycleGAN, OMUDA reduces floating-point calculations by about 87 percent in the training phase and about 30 percent in the inference stage respectively. The quantitative results in both segmentation performance and training efficiency demonstrate the usability of OMUDA in some practical scenes, such as the initial phase of product development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lan完成签到 ,获得积分10
刚刚
落寞鞋子完成签到,获得积分10
1秒前
Bio应助gnr2000采纳,获得30
1秒前
椰子完成签到 ,获得积分10
1秒前
安夏完成签到,获得积分10
2秒前
蜜桃乌龙茶完成签到,获得积分10
2秒前
颜万声完成签到,获得积分10
2秒前
2秒前
3秒前
张希伦完成签到 ,获得积分10
3秒前
CipherSage应助斜玉采纳,获得30
4秒前
我是老大应助Helly采纳,获得10
4秒前
4秒前
栀初完成签到,获得积分10
5秒前
5秒前
yaeshin完成签到,获得积分10
5秒前
爱上学的小金完成签到 ,获得积分10
5秒前
5秒前
7秒前
7秒前
7秒前
chemier027完成签到,获得积分10
10秒前
学术小钻风完成签到,获得积分20
10秒前
vikoel完成签到,获得积分10
10秒前
hayden完成签到,获得积分10
10秒前
77发布了新的文献求助20
11秒前
Deng完成签到,获得积分10
11秒前
深情安青应助JoshuaChen采纳,获得10
11秒前
Moscrol发布了新的文献求助10
12秒前
12秒前
黑天鹅完成签到,获得积分20
12秒前
冯宇关注了科研通微信公众号
12秒前
lin完成签到,获得积分10
12秒前
破晓完成签到,获得积分10
13秒前
14秒前
潇湘夜雨完成签到,获得积分10
14秒前
上官若男应助lane采纳,获得10
15秒前
黑天鹅发布了新的文献求助30
15秒前
科研小白完成签到,获得积分10
15秒前
neil发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582