亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel one-to-multiple unsupervised domain adaptation framework for abdominal organ segmentation

计算机科学 分割 人工智能 模式识别(心理学) 一致性(知识库) 领域(数学分析) 相似性(几何) 图像(数学) 数学 数学分析
作者
Xiaowei Xu,Yinan Chen,Jianghao Wu,Jiangshan Lu,Yuxiang Ye,Yechong Huang,Xin Dou,Kang Li,Guotai Wang,Shaoting Zhang,Wei Gong
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102873-102873 被引量:11
标识
DOI:10.1016/j.media.2023.102873
摘要

Abdominal multi-organ segmentation in multi-sequence magnetic resonance images (MRI) is of great significance in many clinical scenarios, e.g., MRI-oriented pre-operative treatment planning. Labeling multiple organs on a single MR sequence is a time-consuming and labor-intensive task, let alone manual labeling on multiple MR sequences. Training a model by one sequence and generalizing it to other domains is one way to reduce the burden of manual annotation, but the existence of domain gap often leads to poor generalization performance of such methods. Image translation-based unsupervised domain adaptation (UDA) is a common way to address this domain gap issue. However, existing methods focus less on keeping anatomical consistency and are limited by one-to-one domain adaptation, leading to low efficiency for adapting a model to multiple target domains. This work proposes a unified framework called OMUDA for one-to-multiple unsupervised domain-adaptive segmentation, where disentanglement between content and style is used to efficiently translate a source domain image into multiple target domains. Moreover, generator refactoring and style constraint are conducted in OMUDA for better maintaining cross-modality structural consistency and reducing domain aliasing. The average Dice Similarity Coefficients (DSCs) of OMUDA for multiple sequences and organs on the in-house test set, the AMOS22 dataset and the CHAOS dataset are 85.51%, 82.66% and 91.38%, respectively, which are slightly lower than those of CycleGAN(85.66% and 83.40%) in the first two data sets and slightly higher than CycleGAN(91.36%) in the last dataset. But compared with CycleGAN, OMUDA reduces floating-point calculations by about 87 percent in the training phase and about 30 percent in the inference stage respectively. The quantitative results in both segmentation performance and training efficiency demonstrate the usability of OMUDA in some practical scenes, such as the initial phase of product development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研蓝月发布了新的文献求助150
1分钟前
1分钟前
科研蓝月完成签到,获得积分10
1分钟前
1分钟前
我亦化身东海去完成签到,获得积分10
1分钟前
打打应助我亦化身东海去采纳,获得10
1分钟前
pursu发布了新的文献求助10
2分钟前
愉快的犀牛完成签到 ,获得积分10
2分钟前
Dengjia完成签到,获得积分20
2分钟前
Weiyu完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
TXZ06完成签到,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
五五完成签到 ,获得积分10
5分钟前
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
顺利甜瓜发布了新的文献求助10
5分钟前
鲤鱼山人完成签到 ,获得积分10
5分钟前
顺利甜瓜完成签到,获得积分10
5分钟前
张来完成签到 ,获得积分10
5分钟前
洒脱完成签到,获得积分10
6分钟前
AA完成签到 ,获得积分10
6分钟前
6分钟前
陈宇发布了新的文献求助10
6分钟前
orixero应助陈宇采纳,获得10
6分钟前
陈宇完成签到,获得积分10
7分钟前
duan完成签到 ,获得积分10
7分钟前
点点完成签到 ,获得积分10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
9分钟前
9分钟前
杜鑫鹏发布了新的文献求助10
9分钟前
饼干完成签到 ,获得积分10
10分钟前
lin发布了新的文献求助10
10分钟前
飞天大南瓜完成签到,获得积分10
10分钟前
负责以山完成签到 ,获得积分10
10分钟前
震动的忆雪完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357315
求助须知:如何正确求助?哪些是违规求助? 4488736
关于积分的说明 13972488
捐赠科研通 4389979
什么是DOI,文献DOI怎么找? 2411784
邀请新用户注册赠送积分活动 1404374
关于科研通互助平台的介绍 1378621