已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel one-to-multiple unsupervised domain adaptation framework for abdominal organ segmentation

计算机科学 分割 人工智能 模式识别(心理学) 一致性(知识库) 领域(数学分析) 相似性(几何) 图像(数学) 数学 数学分析
作者
Xiaowei Xu,Yinan Chen,Jianghao Wu,Jiangshan Lu,Yuxiang Ye,Yechong Huang,Xin Dou,Kang Li,Guotai Wang,Shaoting Zhang,Wei Gong
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:88: 102873-102873 被引量:11
标识
DOI:10.1016/j.media.2023.102873
摘要

Abdominal multi-organ segmentation in multi-sequence magnetic resonance images (MRI) is of great significance in many clinical scenarios, e.g., MRI-oriented pre-operative treatment planning. Labeling multiple organs on a single MR sequence is a time-consuming and labor-intensive task, let alone manual labeling on multiple MR sequences. Training a model by one sequence and generalizing it to other domains is one way to reduce the burden of manual annotation, but the existence of domain gap often leads to poor generalization performance of such methods. Image translation-based unsupervised domain adaptation (UDA) is a common way to address this domain gap issue. However, existing methods focus less on keeping anatomical consistency and are limited by one-to-one domain adaptation, leading to low efficiency for adapting a model to multiple target domains. This work proposes a unified framework called OMUDA for one-to-multiple unsupervised domain-adaptive segmentation, where disentanglement between content and style is used to efficiently translate a source domain image into multiple target domains. Moreover, generator refactoring and style constraint are conducted in OMUDA for better maintaining cross-modality structural consistency and reducing domain aliasing. The average Dice Similarity Coefficients (DSCs) of OMUDA for multiple sequences and organs on the in-house test set, the AMOS22 dataset and the CHAOS dataset are 85.51%, 82.66% and 91.38%, respectively, which are slightly lower than those of CycleGAN(85.66% and 83.40%) in the first two data sets and slightly higher than CycleGAN(91.36%) in the last dataset. But compared with CycleGAN, OMUDA reduces floating-point calculations by about 87 percent in the training phase and about 30 percent in the inference stage respectively. The quantitative results in both segmentation performance and training efficiency demonstrate the usability of OMUDA in some practical scenes, such as the initial phase of product development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
破晓发布了新的文献求助10
1秒前
2秒前
浮游应助牛奶味麻辣烫采纳,获得10
2秒前
4秒前
韩小小完成签到 ,获得积分10
5秒前
6秒前
6秒前
Hairee发布了新的文献求助50
7秒前
Jane发布了新的文献求助10
8秒前
9秒前
破晓完成签到,获得积分10
9秒前
10秒前
Nymeria发布了新的文献求助30
10秒前
怕孤独的聪展完成签到,获得积分10
11秒前
9464完成签到 ,获得积分10
11秒前
MrTStar完成签到 ,获得积分10
11秒前
dodo应助老鼠咕噜采纳,获得200
11秒前
12秒前
小马甲应助qwq采纳,获得10
13秒前
华仔应助小牙签哈哈哈采纳,获得10
13秒前
拼搏忆文发布了新的文献求助30
13秒前
小聪向前冲完成签到,获得积分10
14秒前
Mira完成签到,获得积分10
15秒前
浮游应助hunter采纳,获得10
15秒前
16秒前
小杭76应助缥缈千兰采纳,获得10
16秒前
畅快的虔纹完成签到,获得积分10
17秒前
17秒前
自觉凌蝶完成签到 ,获得积分10
17秒前
17秒前
18秒前
西瓜撞地球完成签到 ,获得积分10
20秒前
GS完成签到 ,获得积分10
20秒前
20秒前
anna完成签到,获得积分10
21秒前
22秒前
丁老三完成签到 ,获得积分10
23秒前
CD完成签到 ,获得积分10
24秒前
godgyw完成签到 ,获得积分10
25秒前
赘婿应助cc采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312379
求助须知:如何正确求助?哪些是违规求助? 4456101
关于积分的说明 13865341
捐赠科研通 4344497
什么是DOI,文献DOI怎么找? 2385924
邀请新用户注册赠送积分活动 1380277
关于科研通互助平台的介绍 1348681