Railway accident prediction strategy based on ensemble learning

阿达布思 集成学习 人工神经网络 计算机科学 机器学习 人工智能 推论 数据挖掘 预测建模 工程类 支持向量机
作者
Haining Meng,Xinyu Tong,Yi Zheng,Guo Xie,Wenjiang Ji,Xinhong Hei
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:176: 106817-106817 被引量:14
标识
DOI:10.1016/j.aap.2022.106817
摘要

Railway accident prediction is of great significance for establishing an early warning mechanism and preventing the occurrences of accidents. Safety agencies rely on prediction models to design railroad risk management strategies. Based on historical railway accident data, an ensemble learning strategy for accident prediction is proposed. Firstly, an improved K-nearest neighbors (KNN) data imputation algorithm is proposed to solve the problem of missing data in the dataset. Then, to reduce the impact of imbalanced data on prediction performance, an AdaBoost-Bagging method is presented. Finally, according to the feature importance in the prediction model, accident features are ranked to identify new insights into the cause of the accident. The AdaBoost-Bagging prediction method is applied to the Federal Railroad Administration (FRA) dataset. The application results show that, compared with Artificial Neural Network (ANN), XGBoost, GBDT, Stacking and AdaBoost methods, AdaBoost-Bagging method has a smaller prediction error and faster inference time in predicting railway accidents. Accuracy, Precision, Recall and F1-score are 0.879, 0.879, 0.883 and 0.881 respectively, and the inference time is reduced by 23.38%, 12.15%, 6.66%, 3.17% and 11.41% respectively. The prediction method can well mine important features of railway accidents without knowing the accident mechanism or the relationship between various railway accidents and factors, e.g., the critic risk factors related to derailment and collision accidents are investigated in the prediction. The findings will be helpful to the prevention and management of railway accidents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
媛肖完成签到 ,获得积分10
1秒前
科研通AI6应助makimaki采纳,获得10
1秒前
1秒前
jingdaitianxiang完成签到 ,获得积分10
3秒前
www完成签到,获得积分10
4秒前
内蒙古深海大鱿鱼完成签到,获得积分10
6秒前
无极微光应助伶俐的月亮采纳,获得20
7秒前
luckydong完成签到,获得积分10
7秒前
好人一生平安完成签到,获得积分10
9秒前
科研通AI6应助儒雅的蓝采纳,获得10
11秒前
桐桐应助要减肥笑阳采纳,获得30
11秒前
www发布了新的文献求助10
12秒前
李健的粉丝团团长应助nn采纳,获得10
13秒前
xiaobu完成签到,获得积分10
14秒前
小林不熬夜完成签到,获得积分10
16秒前
17秒前
17秒前
默默的乌冬面完成签到,获得积分20
17秒前
11完成签到,获得积分10
17秒前
yznfly应助藏识采纳,获得200
18秒前
money完成签到 ,获得积分10
18秒前
BareBear应助火星上的中恶采纳,获得10
19秒前
仙女的小可爱完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
老实的电源完成签到 ,获得积分10
20秒前
20秒前
W29完成签到,获得积分0
21秒前
考博圣体发布了新的文献求助10
21秒前
豌豆苗发布了新的文献求助10
21秒前
qwer完成签到 ,获得积分10
22秒前
23秒前
陈向向发布了新的文献求助10
24秒前
24秒前
26秒前
26秒前
萧雨墨发布了新的文献求助10
27秒前
e746700020完成签到,获得积分10
27秒前
28秒前
chuanzhi完成签到,获得积分10
28秒前
28秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580675
求助须知:如何正确求助?哪些是违规求助? 4665553
关于积分的说明 14756327
捐赠科研通 4606961
什么是DOI,文献DOI怎么找? 2528109
邀请新用户注册赠送积分活动 1497411
关于科研通互助平台的介绍 1466357