Air quality index forecast in Beijing based on CNN-LSTM multi-model

均方误差 计算机科学 人工智能 卷积神经网络 循环神经网络 模式识别(心理学) 时间序列 空气质量指数 北京 深度学习 人工神经网络 特征(语言学) 机器学习 统计 数学 语言学 哲学 物理 气象学 法学 政治学 中国
作者
Jiaxuan Zhang,Shunyong Li
出处
期刊:Chemosphere [Elsevier BV]
卷期号:308: 136180-136180 被引量:123
标识
DOI:10.1016/j.chemosphere.2022.136180
摘要

Accurate predicting the air quality trend can provide a theoretical basis for environmental protection management and decision-making. This study proposed the convolutional neural networks-long short-term memory (CNN-LSTM) model, which was proposed to improve the air quality prediction accuracy. Firstly, CNN's efficient feature extraction function was used to extract data features. Then the feature vectors were constructed into the sequence form, which was transmitted to the LSTM network. The LSTM layer learned the changing rules of air quality data to predict future data. Taking Beijing's air quality index as an example, the prediction results of the CNN-LSTM model were compared with those of auto-regressive moving average (ARMA), seasonal auto-regression integrated moving average (SARIMA), recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU) models. The results show that, compared with other single prediction models, the CNN-LSTM achieved the highest prediction accuracy. In particular, CNN-LSTM was compared with the SARIMA model, which is a time series representative model. The indicators of the CNN-LSTM model have been well improved. The mean absolute error (MAE) and root mean square error (RMSE) of the CNN-LSTM were reduced respectively 3.17% and 5.46%, and R2 was improved 8.45%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
FZU_ChyL完成签到 ,获得积分10
2秒前
orixero应助Lee采纳,获得10
2秒前
2秒前
mo发布了新的文献求助10
4秒前
Jenny发布了新的文献求助10
6秒前
7秒前
7秒前
隐形的迎南完成签到,获得积分10
7秒前
9秒前
邓邓发布了新的文献求助10
9秒前
小鼠星球发布了新的文献求助20
9秒前
10秒前
细心妙菡完成签到 ,获得积分10
11秒前
优雅冰蝶完成签到,获得积分10
11秒前
12秒前
666应助Jenny采纳,获得10
12秒前
天天快乐应助dawang采纳,获得10
13秒前
13秒前
Glorious完成签到,获得积分10
13秒前
柴柴子完成签到,获得积分10
13秒前
666应助凡迪亚比采纳,获得20
14秒前
朻安完成签到,获得积分10
15秒前
BILNQPL发布了新的文献求助10
15秒前
糊糊糊发布了新的文献求助10
16秒前
英姑应助kyJYbs采纳,获得10
18秒前
18秒前
科研小辣机完成签到,获得积分10
19秒前
tsntn完成签到,获得积分10
20秒前
orixero应助玻璃杯采纳,获得10
20秒前
22秒前
23秒前
25秒前
Yaon-Xu完成签到,获得积分10
26秒前
科研完成签到,获得积分20
26秒前
Alex完成签到,获得积分10
26秒前
bkagyin应助无情胡萝卜采纳,获得10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159739
捐赠科研通 3246353
什么是DOI,文献DOI怎么找? 1793415
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804374