Air quality index forecast in Beijing based on CNN-LSTM multi-model

均方误差 计算机科学 人工智能 卷积神经网络 循环神经网络 模式识别(心理学) 时间序列 空气质量指数 北京 深度学习 人工神经网络 特征(语言学) 机器学习 统计 数学 哲学 气象学 物理 中国 法学 语言学 政治学
作者
Jiaxuan Zhang,Shunyong Li
出处
期刊:Chemosphere [Elsevier BV]
卷期号:308: 136180-136180 被引量:123
标识
DOI:10.1016/j.chemosphere.2022.136180
摘要

Accurate predicting the air quality trend can provide a theoretical basis for environmental protection management and decision-making. This study proposed the convolutional neural networks-long short-term memory (CNN-LSTM) model, which was proposed to improve the air quality prediction accuracy. Firstly, CNN's efficient feature extraction function was used to extract data features. Then the feature vectors were constructed into the sequence form, which was transmitted to the LSTM network. The LSTM layer learned the changing rules of air quality data to predict future data. Taking Beijing's air quality index as an example, the prediction results of the CNN-LSTM model were compared with those of auto-regressive moving average (ARMA), seasonal auto-regression integrated moving average (SARIMA), recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit (GRU) models. The results show that, compared with other single prediction models, the CNN-LSTM achieved the highest prediction accuracy. In particular, CNN-LSTM was compared with the SARIMA model, which is a time series representative model. The indicators of the CNN-LSTM model have been well improved. The mean absolute error (MAE) and root mean square error (RMSE) of the CNN-LSTM were reduced respectively 3.17% and 5.46%, and R2 was improved 8.45%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助Lett采纳,获得30
刚刚
刚刚
李健应助adou采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
CipherSage应助芋泥采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
3927456843应助科研通管家采纳,获得20
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
ding应助科研通管家采纳,获得10
2秒前
Leijiaru完成签到,获得积分20
3秒前
丘比特应助小小娜采纳,获得10
3秒前
4秒前
朱佳慧发布了新的文献求助10
4秒前
彭于晏应助小一采纳,获得10
4秒前
HHH完成签到,获得积分10
4秒前
皮皮雪发布了新的文献求助20
5秒前
研友_enP05n发布了新的文献求助10
5秒前
传奇3应助鱼0306采纳,获得10
5秒前
6秒前
五條小羊发布了新的文献求助10
6秒前
彩色的恋风完成签到,获得积分10
6秒前
HHH发布了新的文献求助10
7秒前
吃鱼完成签到 ,获得积分10
7秒前
8秒前
大树发布了新的文献求助10
9秒前
嬛嬛完成签到,获得积分10
9秒前
橙以澄发布了新的文献求助10
9秒前
香蕉你个笨啦啦完成签到,获得积分10
10秒前
Akim应助咎如天采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096