NSECDA: Natural Semantic Enhancement for CircRNA-Disease Association Prediction

计算机科学 人工智能 分类器(UML) 自然语言处理 随机森林 机器学习 相关性 数据挖掘 数学 几何学
作者
Lei Wang,Leon Wong,Zhu‐Hong You,De-Shuang Huang,Xiao-Rui Su,Bo-Wei Zhao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 5075-5084 被引量:15
标识
DOI:10.1109/jbhi.2022.3199462
摘要

Increasing evidence suggest that circRNA, as one of the most promising emerging biomarkers, has a very close relationship with diseases. Exploring the relationship between circRNA and diseases can provide novel perspective for diseases diagnosis and pathogenesis. The existing circRNA-disease association (CDA) prediction models, however, generally treat the data attributes equally, do not pay special attention to the attributes with more significant influence, and do not make full use of the correlation and symbiosis between attributes to dig into the latent semantic information of the data. Therefore, in response to the above problems, this paper proposes a natural semantic enhancement method NSECDA to predict CDA. In practical terms, we first recognize the circRNA sequence as a biological language, and analyze its natural semantic properties through the natural language understanding theory; then integrate it with disease attributes, circRNA and disease Gaussian Interaction Profile (GIP) kernel attributes, and use Graph Attention Network (GAT) to focus on the influential attributes, so as to mine the deeply hidden features; finally, the Rotation Forest (RoF) classifier was used to accurately determine CDA. In the gold standard data set CircR2Disease, NSECDA achieved 92.49% accuracy with 0.9225 AUC score. In comparison with the non-natural semantic enhancement model and other classifier models, NSECDA also shows competitive performance. Additionally, 25 of the CDA pairs with unknown associations in the top 30 prediction scores of NSECDA have been proven by newly reported studies. These achievements suggest that NSECDA is an effective model to predict CDA, which can provide credible candidate for subsequent wet experiments, thus significantly reducing the scope of investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助隋晓钰采纳,获得10
刚刚
刚刚
eternity136发布了新的文献求助10
3秒前
Singularity应助福福气采纳,获得10
4秒前
Lucas应助天真的宝马采纳,获得10
5秒前
5秒前
5秒前
6秒前
叮叮咚咚发布了新的文献求助10
7秒前
今后应助愤怒的稀采纳,获得10
8秒前
Connie发布了新的文献求助10
8秒前
水菜泽子发布了新的文献求助10
8秒前
9秒前
9秒前
lulyt完成签到 ,获得积分10
9秒前
9秒前
10秒前
ylq发布了新的文献求助10
10秒前
hhhhhh完成签到,获得积分20
10秒前
大方小白发布了新的文献求助10
10秒前
Archy发布了新的文献求助10
11秒前
小白发布了新的文献求助10
12秒前
FACEISIN发布了新的文献求助10
13秒前
13秒前
14秒前
忘记时间发布了新的文献求助10
14秒前
汉堡包应助XL神放采纳,获得10
15秒前
小灿发布了新的文献求助10
17秒前
张雯思发布了新的文献求助10
17秒前
辛勤的芾发布了新的文献求助10
18秒前
cc4ever完成签到,获得积分10
18秒前
鸣笛应助宋子琛采纳,获得30
18秒前
18秒前
18秒前
mushen完成签到,获得积分10
20秒前
Yi完成签到,获得积分10
20秒前
20秒前
凡迪亚比应助晴烟ZYM采纳,获得30
20秒前
威武香水完成签到 ,获得积分10
21秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992746
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263200
捐赠科研通 3273346
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809609