NSECDA: Natural Semantic Enhancement for CircRNA-Disease Association Prediction

计算机科学 人工智能 分类器(UML) 自然语言处理 随机森林 机器学习 相关性 数据挖掘 数学 几何学
作者
Lei Wang,Leon Wong,Zhu‐Hong You,De-Shuang Huang,Xiao-Rui Su,Bo-Wei Zhao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 5075-5084 被引量:15
标识
DOI:10.1109/jbhi.2022.3199462
摘要

Increasing evidence suggest that circRNA, as one of the most promising emerging biomarkers, has a very close relationship with diseases. Exploring the relationship between circRNA and diseases can provide novel perspective for diseases diagnosis and pathogenesis. The existing circRNA-disease association (CDA) prediction models, however, generally treat the data attributes equally, do not pay special attention to the attributes with more significant influence, and do not make full use of the correlation and symbiosis between attributes to dig into the latent semantic information of the data. Therefore, in response to the above problems, this paper proposes a natural semantic enhancement method NSECDA to predict CDA. In practical terms, we first recognize the circRNA sequence as a biological language, and analyze its natural semantic properties through the natural language understanding theory; then integrate it with disease attributes, circRNA and disease Gaussian Interaction Profile (GIP) kernel attributes, and use Graph Attention Network (GAT) to focus on the influential attributes, so as to mine the deeply hidden features; finally, the Rotation Forest (RoF) classifier was used to accurately determine CDA. In the gold standard data set CircR2Disease, NSECDA achieved 92.49% accuracy with 0.9225 AUC score. In comparison with the non-natural semantic enhancement model and other classifier models, NSECDA also shows competitive performance. Additionally, 25 of the CDA pairs with unknown associations in the top 30 prediction scores of NSECDA have been proven by newly reported studies. These achievements suggest that NSECDA is an effective model to predict CDA, which can provide credible candidate for subsequent wet experiments, thus significantly reducing the scope of investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穿堂风发布了新的文献求助10
1秒前
上官若男应助忧郁若菱采纳,获得10
2秒前
3秒前
代小葵完成签到,获得积分10
3秒前
戴哈哈发布了新的文献求助10
4秒前
金源元完成签到,获得积分10
4秒前
5秒前
6秒前
无语完成签到,获得积分10
6秒前
安然僧应助newplayer采纳,获得10
6秒前
StarkGavin发布了新的文献求助10
7秒前
凌风完成签到,获得积分10
7秒前
金源元发布了新的文献求助50
10秒前
10秒前
朱w完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
Jasper应助某竖特别菜采纳,获得10
11秒前
思源应助戴哈哈采纳,获得10
11秒前
文艺的小馒头完成签到,获得积分10
12秒前
代小葵发布了新的文献求助10
12秒前
12秒前
caas6发布了新的文献求助10
12秒前
此晴可待发布了新的文献求助10
13秒前
<7发布了新的文献求助10
13秒前
14秒前
小赵完成签到,获得积分10
14秒前
14秒前
阿旭发布了新的文献求助10
15秒前
16秒前
16秒前
陶巴子完成签到,获得积分10
17秒前
华仔应助季末默相依采纳,获得10
17秒前
禅心发布了新的文献求助10
17秒前
17秒前
17秒前
科目三应助好好学习吧采纳,获得10
18秒前
18秒前
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412485
求助须知:如何正确求助?哪些是违规求助? 3015188
关于积分的说明 8868896
捐赠科研通 2702848
什么是DOI,文献DOI怎么找? 1481919
科研通“疑难数据库(出版商)”最低求助积分说明 685086
邀请新用户注册赠送积分活动 679733