Estimation of SoH and internal resistances of Lithium ion battery based on LSTM network

均方误差 内阻 电池(电) 人工神经网络 平均绝对百分比误差 健康状况 电压 循环神经网络 输出阻抗 电阻抗 计算机科学 人工智能 控制理论(社会学) 统计 数学 工程类 物理 电气工程 功率(物理) 控制(管理) 量子力学
作者
Chí Nguyễn Văn,Duy Ta Quang
出处
期刊:International Journal of Electrochemical Science [ESG]
卷期号:18 (6): 100166-100166 被引量:36
标识
DOI:10.1016/j.ijoes.2023.100166
摘要

State of Health (SoH) and internal resistances, including the solid electrolyte interphase (SEI) resistance and charge transfer resistance, are important parameters that change in the long-term representation of the aging state of Lithium-ion batteries. Using long short-term memory (LSTM) network, a neural network with the ability to remember long-term data features, this paper presents a method for estimating SoH and internal resistances of Lithium-ion batteries using LSTM network with deep learning mechanism. Based on experimental data including voltage, current, temperature with 03 charge/discharge scenarios and measuring impedance, input/output data structure is set up to reflect aging features used for estimating SoH and internal resistances by LSTM. The first LSTM network is designed to estimate SoH, then the data including current, voltage, temperature and estimated SoH will be used to estimate the SEI resistance and charge transfer resistance by the second LSTM network. With this structure, the estimation of internal resistances in practice will become simpler as it does not require measuring capacity and impedance spectroscopy. Comparing the estimation errors using LSTM and FNN with 03 performance metrics including mean absolute percentage error (MAPE), mean percentage error (MPE) and root mean square error (RMSE) shows that the estimation results of SoH and internal resistances of the cell by LSTM have higher accuracy than the estimation by Feedforward Neural Network (FNN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhonglv7应助vogo7采纳,获得10
1秒前
温婉的从阳完成签到,获得积分10
1秒前
炙热小土豆完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
砰砰砰砰啪!完成签到 ,获得积分10
1秒前
可爱电源发布了新的文献求助10
2秒前
宏扈完成签到,获得积分10
2秒前
bkagyin应助hym111采纳,获得10
2秒前
7788完成签到,获得积分10
2秒前
研友_nd7b5L发布了新的文献求助10
2秒前
2秒前
呼啦啦发布了新的文献求助10
3秒前
3秒前
茶送白粥发布了新的文献求助10
3秒前
3秒前
务实源智完成签到,获得积分10
3秒前
jogy完成签到,获得积分10
3秒前
陈好好完成签到 ,获得积分10
3秒前
3秒前
Renn完成签到,获得积分10
4秒前
Stella应助扭捏的扭捏采纳,获得10
4秒前
仁爱的雁芙完成签到,获得积分10
4秒前
4秒前
LeiYu发布了新的文献求助10
5秒前
5秒前
zmmouc完成签到,获得积分10
5秒前
刘娟完成签到,获得积分10
5秒前
6秒前
6秒前
SciGPT应助木木木采纳,获得10
6秒前
watercolding完成签到,获得积分10
6秒前
BowieHuang应助单身的翠容采纳,获得10
6秒前
甜美三娘完成签到,获得积分10
6秒前
文献求助完成签到,获得积分10
6秒前
7秒前
orixero应助人生苦短采纳,获得10
7秒前
舒服的曼云完成签到,获得积分10
7秒前
丹丹完成签到 ,获得积分10
7秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580183
求助须知:如何正确求助?哪些是违规求助? 4665044
关于积分的说明 14754353
捐赠科研通 4606555
什么是DOI,文献DOI怎么找? 2527823
邀请新用户注册赠送积分活动 1497229
关于科研通互助平台的介绍 1466289